
Network Dataset Generation and
Implementation of a Network Intrusion
Detection System using Neural Networks

Fotios Dimitrios Tsokos

Supervisor: Prof. Papadimitriou Georgios

School of Informatics
Aristotle University of Thessaloniki

February 2021

In memoriam of my grandpa Fotis Tsokos,
I still recall your joy when you accompanied me to school for the first time.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Fotios Dimitrios Tsokos
February 2021

Acknowledgements

I would like to thank my supervisor, Professor Papadimitriou, for his faith in me, his support
and advice. I would also want to thank Stefanos Papadopoulos for the lessons he offered me
to expose me to the field of Neural Networks and Zack Stefanou for assisting me to convey
Machine Learning in the best manner in the related chapter. Also this thesis would have been
in a much worse situation without the support of Spyros Megalos, who despite his hectic
schedule reviewed and offered revisions. Finally, I’d want to express my gratitude to my
family for their unwavering support throughout the years, as well as Stella Lioka, for being a
constant source of inspiration.

Περίληψη

Σε ένα διαρκώς μεταβαλλόμενο περιβάλλον, όπου νέες απειλές εμφανίζονται σε τακτι-

κή βάση, είναι ζωτικής σημασίας η δυνατότητα αναγνώρισης κακόβουλων πακέτων στο

δίκτυο για την προστασία των χρηστών. Τα παραδοσιακά συστήματα ανίχνευσης ει-

σβολών στο δίκτυο συγκρίνουν αποτυπώματα πακέτων για την ανίχνευση κακόβουλης

δραστηριότητας, αλλά τα πιο σύγχρονα συστήματα χρησιμοποιούν μεθόδους μηχανικής

μάθησης. Προκειμένου να εκπαιδευτούν στην ανίχνευση εισβολών, οι τελευταίες απαιτούν

την ύπαρξη συνόλων δεδομένων. Ενώ έχει σημειωθεί τεράστια πρόοδος στην ανάπτυξη

μοντέλων τεχνητής νοημοσύνης που ανιχνεύουν κακόβουλα πακέτα, το ζήτημα της πα-

ροχής των δεδομένων για την εκπαίδευσή τους υστερεί κατά πολύ. Στόχος της παρούσας

διπλωματικής εργασίας είναι η συγγραφή λογισμικού που αναλύει δεδομένα πακέτων δι-

κτύου και συμβουλεύεται ένα υπάρχον εργαλείο ανίχνευσης εισβολών για τη δημιουργία

συνόλων δεδομένων από τα οποία μπορεί να εκπαιδευτεί ένα νευρωνικό δίκτυο για τον

εντοπισμό εισβολών. Τα σύνολα δεδομένων που παράγονται, όπως και τα περισσότερα

υπάρχοντα συστήματα, εστιάζουν στη ροή των πακέτων του δικτύου αλλά και στη δομή

των επικεφαλίδων των πακέτων και στο περιεχόμενο των δεδομένων του.

Abstract

In an ever-changing environment where new threats emerge on a regular basis, it is critical to
be able to recognize malicious packets on the network in order to safeguard users. Traditional
network intrusion detection systems (NIDS) compare packet fingerprints to detect malicious
activity, but more current systems use machine learning methods. In order to be trained in
intrusion detection, the latter requires the presence of datasets. While tremendous progress
has been made in the development of artificial intelligence models that detect malicious
packets, the issue of providing the data to train them lags far behind. The goal of this thesis
is to write software (Al Pastor) that analyzes network packet data (pcap files) and consults an
existing intrusion detection tool (Snort) to generate datasets from which a neural network can
be trained to identify intrusions. The produced datasets, like most existing systems, focus
on the network’s packet flow but also on the structure of the packet headers and their data
content.

Contents

Introduction 1

1 Network Attacks 4
1.1 The consequences of a network assault . 4
1.2 Taxonomy of attacks . 5
1.3 A brief overview of the TCP/IP Protocol Model 6

1.3.1 Structure . 7
1.3.2 TCP/IP Protocols . 8

1.4 Attacks against the TCP/IP Model . 9
1.4.1 DoS Attacks . 10
1.4.2 Malware . 11
1.4.3 Design/Implementation Exploits 11
1.4.4 Tracing such attacks . 13

2 Intrusion Detection Systems 15
2.1 Deployment method based IDS . 15

2.1.1 Network-based Intrusion Detections Systems 16
2.1.2 Host-based Intrusion Detections Systems 16

2.2 Detection Methods . 16
2.2.1 Signature Based . 16
2.2.2 Anomaly Detection . 17

2.3 Metrics . 18

3 Machine and Deep Learning 20
3.1 Concepts . 20

3.1.1 Dataset . 21
3.1.2 Feature engineering . 22
3.1.3 Data Preprocessing . 22

Contents viii

3.1.4 Learning . 23
3.2 Machine Learning Algorithms . 24

3.2.1 Naive Bayes . 24
3.2.2 K-Nearest Algorithms . 24

3.3 Deep Learning . 25
3.3.1 Neurons . 25
3.3.2 Neural Networks . 26
3.3.3 Activation Functions . 27
3.3.4 Training . 29
3.3.5 Recurrent Neural Networks . 33

4 Machine Learning and Network Intrusion Detection Systems 34
4.1 Datasets . 36

4.1.1 Packet Flow . 36
4.1.2 KDD99 . 37
4.1.3 NSL-KDD . 38
4.1.4 Kyoto Dataset . 38
4.1.5 UNSW-NB15 . 39
4.1.6 MAWILab . 39
4.1.7 CTU MALWARE CAPTURE BOTNET 40

4.2 ML-NIDS Examples . 40
4.2.1 k-Nearest Neighbour IDS . 40
4.2.2 ESIDE-Depian . 41
4.2.3 Neural Network NIDS . 44

5 Al Pastor 46
5.1 Toolset . 49

5.1.1 Argus . 50
5.1.2 Snort . 50
5.1.3 Tensorflow . 51

5.2 Dataset Generator . 51
5.2.1 Packet Flow Data . 51
5.2.2 Protocol Header Datasets . 52

5.3 Neural Network Models . 54
5.3.1 Data Pre-Processing . 54
5.3.2 Adding Noise . 56
5.3.3 NN Architecture . 56

Contents ix

5.4 Results . 56
5.4.1 NN Configuration . 57
5.4.2 Testcase: DNS Response Headers 60
5.4.3 Testcase: BotNet Attack . 63
5.4.4 Al Pastor as an Signature-Based IDS 65
5.4.5 New Threats/Anomalies . 66

Conclusion 69

List of Figures 71

List of Tables 73

Glossary 74

Bibliography 76

Appendix A Generating Datasets through Al Pastor 81
A.1 Command Line . 81
A.2 Dataset Generation . 82

Appendix B Analysing Protocol Header Datasets through Tensorflow 83

Introduction

Samuel Arthur paved the way for computer gaming and machine learning. He coined the
term for the first time in 1959. It is defined as "the branch of science that enables computers
to learn without being explicitly programmed."[1]. Since then, machine learning and artificial
intelligence in general have progressed along previously unimaginable avenues.

In 1997, IBM’s Deep Blue software[2] scored a significant victory against world chess
champion Kasparov by using the Alpha-beta pruning approach, a branch-and-bound algo-
rithm for solving NP-Hard problems. Although these approaches are not considered machine
learning but rather a forerunner to artificial intelligence, they demonstrate that a computer
may outperform a human champion on a certain topic. If the above is true for chess, which
was a game of innovation until recently, then it may have comparable applicability in other
industries.

The following example of a machine defeating a human occurs in the Chinese game of
Go. DeepMind Technologies has developed software that uses the Monte Carlo technique to
choose the optimal move from a tree of potential moves[3]. The tree was generated using
machine learning and trained using data from several human-computer games.

As Isaac Asimov put it, "The most tragic element of existence at the moment is that
science is accumulating information faster than society is accumulating wisdom". Perhaps we
can alter the phrase to read as follows: "The most concerning but yet encouraging element of
life at the moment is that machine learning accumulates information quicker than civilization
accumulates wisdom".

The classical programming approach is characterized by severe staticity. To accommodate
diverse data inputs, programmers may need to make adjustments. On the other hand, NPHard
tasks are intractable (they can only be solved with techniques such as Branch & Bound).
Because the programmer controls the program’s control flow, the program’s functioning is
entirely dependent on the programmer’s competence and expertise. However, the author of
an algorithm, being human, cannot think of every possible scenario that might occur. This
leads us to the conclusion that an unanticipated condition will always exist that might be
devastating to the system and necessitate human intervention by a professional.

Contents 2

However, machine learning algorithms operate differently. A program is fundamentally
trained using the data it receives and attempts to discover patterns between occurrences. In
successive executions, the software consults the data-driven model to change the input and
generate a result (while updating its data model). Thus, such algorithms become dynamic and
adaptive to various forms of input without the need for human interaction. Additionally, the
program’s capacity to cope with a variety of scenarios is not constrained by the programmer’s
skills.

Intrusion detection systems utilize two ways to identify intrusions: misuse detection and
anomaly detection. Misuse detection identifies anomalous states (for example, malicious
packets) and attempts to locate them within the data set. Traditional Intrusion Detection
Systems do this by examining the database of prior attacks and comparing them to the packets
coming on the network (i.e., the headers and contents of packets on the network).

Detecting network abnormalities is a different story. In this case, the system must recog-
nize the pattern in the data, classify a condition as ’normal,’ and then treat any deviation from
that definition as a possible threat. This cannot be accomplished using conventional Intrusion
Detection Systems, as previously stated, their skill is matched by their programmer’s.

A threat is unpredictable by definition, which is what makes it a threat in the first place.
Machine learning techniques can control and identify behavioral problems, which is why
there is a growing trend of employing Artificial Intelligence (AI) software in conjunction
with IDS[4]. The survey conducted of Hongyu Liu and Bo Lang[5] presented a list of related
implementations and methodologies. Some of these will be shown in the following chapters.

The most frequently encountered issue in machine learning research is the collection and
structuring of data. As machine learning-based intrusion detection systems are a relatively
new technology, it’s logical that not as much work has been done on developing datasets
to "train" our algorithms. The majority of dataset generating implementations employ
Packet Flow data (comparable to Cisco’s NetFlow[6] data) and utilize metrics such as
packet delivery rate, connection counts, and so on to identify network hazards. While this
is an effective method for detecting the most damaging sorts of threats (e.g., brute force
assaults), it is ineffective at detecting more complicated threats in which just a few fields of
packets are modified to carry out the attack (for example the Ping of Death attack). Certain
implementations augment their data with protocol header fields such as the TCP FLAG.
However, the header fields included in those solutions were inserted because of previous
knowledge indicating that an attacker may utilize this flag to launch an assault (e.g. SYN
Flood). As a result, if a new zero-day assault exploits a vulnerability in another field (for
example, TCP Options), the Intrusion Detection System will be unable to detect it.

Contents 3

The Al Pastor project was implemented during this thesis. The project’s goal is to create
datasets from local networks, analyze network traffic, and detect risks using Neural Networks.
The system generates two kinds of datasets: traditional Netflow data and protocol-specific
data. We employ a rule-based intrusion detection system to assign a value (1-4) to suspicious
packets depending on their riskiness. We next train various Neural Network models, that
we refer to as Experts, to classify incoming packets (and packet flows) based on Snorts’
classification.

There are Protocol Experts in addition to Netflow Experts. We can examine and decide if
new packets coming in our network are risky or not once we train the models using datasets
we produce (or datasets acquired from other sources in the pcap file format). Our experiment
shows that when learning approaches are taught with a mix of Netflow data and packet
headers, we may get superior outcomes in intrusion detection.

The chapters that follow are organized in the manner outlined below:

• The first chapter discusses network assaults, their classification, and instances of such
attacks.

• In Chapter 2, you’ll learn about intrusion detection systems and packet analysis
systems.

• Machine learning and neural network theory are introduced in Chapter 3.

• In Chapter 4, we will look at intrusion detection systems that make considerable use of
machine learning techniques and freely available datasets.

• Chapter 5 describes the structure of the Al Pastor program as well as the results of the
tests we conducted.

Chapter 1

Network Attacks

1.1 The consequences of a network assault

The usage of computers is no longer optional in today’s world; it is required. A few years ago,
a screen separated cyberspace from us. It was a reminder that our operating system, software,
and internet are all realms contained within our computer box. However, the convergence
of machine and man (and, to some extent, their union) results in an unsettling symmetry:
Because the human world has gotten closer to the software world, software risks have become
threats to humans.

The Internet of Things is a prime example of this kind of fusion of man and machine. The
"real" world, the world of humans, is now populated by physical devices that run software,
are networked, and are capable of communicating with one another.. Some execute simple
procedural algorithms, while others make decisions using the power of Artificial Intelligence.
Because all of those Things are linked to the Internet, they are vulnerable to hacking attempts
and hence may be commandeered and used against us.

The danger was already understood even when ordinary computers were used. A ma-
licious person who obtains credit card information or access to another person’s private
messages has the potential to have a significant impact on their personal lives. Consequently,
a hacker can indeed utilize software to inflict damage (in the "real" world) by manipulating
personal data. Such assaults, however, do not represent a direct danger to our physical
survival. An attacker, on the other hand, may wreak havoc and pose a genuine physical
danger to our lives by accessing equipment in our surroundings (for example, a stove or a
garage door) or exploiting and manipulating our cars (Internet of Vehicles - IoV).

However, the danger of cyber-attacks may grow more widespread. New terminology,
such as "cyberterrorism"[7] and "cyberwarfare"[8] are being incorporated into our vocabulary
to describe the use of digital assaults against whole nations. The assault on Esthonia in May

1.2 Taxonomy of attacks 5

2007[9] was one of the earliest instances of a cyber war. Unknown attackers attacked banks,
media outlets, and government organizations, during this event, by deleting their websites.
Since then, cyber warfare techniques have been added to the list of tools of states around the
world. In 2019, America retaliated to tanker strikes, for which it held Iran responsible, with a
cyber assault aimed at seizing control of military systems[10]. Cyberwarfare, in general, is
not a novel concept. There have previously been instances of one state orchestrating cyber
assaults against another (for example, Stuxnet’s use against Iran’s nuclear plants[11]), but
these would not be considered acts of war.

As a result, we infer that cyber assaults can be directed at gadgets in our homes, bank
accounts, corporate websites, or even entire countries. In theory, no one is secure as long as
they are connected to the internet. Now, more than ever, we want dynamic security against
cyber-attacks, capable of defending against known dangers while identifying new ones[4].

1.2 Taxonomy of attacks

Attack classification has always been a significant technique for security specialists to better
identify possible attacks on a given information system. By grouping assaults, one may
swiftly concentrate on particular forms of attacks instead of having a big list of assaults that
would take more time to study and choose attacks of interest.

W. Stallings gives a list of the major security services in his book "Cryptography and
Network Security: Principles and Practice" [12], i.e. "services provided by a protocol layer of
communicating open systems that ensures adequate system security or data transfer security".
The most important security services are:

• Confidentiality: Confidentiality refers to the protection of data, objects, and resources
against unwanted sight and access.

• Authentication: Authentication is a service that is used to establish the identity of the
person who generated the information. It makes sure that hosts, really represent that
which is said to be represented.

• Integrity: Integrity safeguards guard against unwanted data change. These controls
certify the correctness and completeness of data.

• Availability: Data availability refers to the ability of users to access data. It ensures
that users may access your system and data whenever they are required. It is frequently
related with system stability and uptime.

1.3 A brief overview of the TCP/IP Protocol Model 6

The types of attacks that are capable of compromising each of the aforementioned security
services is a typical attack classification[12].

• Interception (Confidentiality): Interception attacks encompass all types of assaults
aiming at jeopardizing the secrecy of critical infrastructure.

• Fabrication (Authentication): Fabrication attacks involve the use of a system to gen-
erate data, activities, interactions, or other activities with the intent of simulating the
behavior of another system. Although fabrication assaults are primarily concerned
with integrity, they can also be viewed as a danger to availability.

• Modification (Integrity): Modification attacks include a variety of different types of
attacks aiming at altering the content of messages and data storage.

• Interruption (Availability): Interruption attacks are directed at depriving lawful parties
of access to a set of infrastructure services.

Those attacks can be executed by exploiting vulnerabilities. A vulnerability or flaw is a
weakness in the security design of a system that may be exploited by attackers. The overall
vulnerability of the system to threats is determined by the likelihood of an attacker exploiting
those faults.

1.3 A brief overview of the TCP/IP Protocol Model

Before we present prominent attacks and attempt to classify them, it is necessary to define
and demonstrate the channel via which network attacks are transfered from one machine to
another. The internet is this medium, and the TCP/IP model is what binds it all together.

The Internet Protocol Suite (TCP/IP) model was created to define the functionality of a
communication system by breaking the communication method down into smaller, simpler
components (a nice compact overview is provided here [13]). It enables us to decide the best
way for a particular computer to connect to the internet and how data should be delivered
between it and other computers. It was established in the 1960s by the United States
Department of Defense (DoD) and is based on industry standards. The Internet protocol suite
makes no assumptions about the hardware or software environment in which it runs. It is
sufficient to have hardware and software capable of transmitting and receiving packets across
a computer network. As a result, the suite is now available on virtually every computing
platform. This section will examine the TCP/IP model’s format and numerous protocols.
Additionally, we will investigate a list of threats and attacks to this technology stack and
attempt to categorize them.

1.3 A brief overview of the TCP/IP Protocol Model 7

1.3.1 Structure

In general the TCP/IP Protocol Stack is defined by its three principles:

• End-to-End: A network design approach which preserves application-specific func-
tionality at communication end points. It essentially removes crucial components from
intermediary communicating nodes that serve only as data conduits.

• Robustness: Otherwise known as Postel’s Law, which is best articulated by his own
phrase, "Be liberal in what you accept, and conservative in what you send."[14]. It
essentially states that hosts should always deliver well-formed packets and accept any
datagram that they are capable of decoding.

• Encapsulation: Encapsulation is the procedure of transferring data from one protocol
to another via a translation process. This is performed by surrounding the data with
headers and trailers (encapsulating them). Receivers should appropriately decapsulate
the data in order to decode it.

The model incorporates these ideas throughout its four layers, which are described below:

• Link: The link layer is in charge of transferring data between hosts (or routers) over
a single physical link. It serves as the foundation for computer communication. The
internet is effectively made up of several such links between hosts. Ethernet (IEEE
802.3) is the most widely known Link Layer Protocol.

• Internet: This layer’s primary role is to enable hosts to import packets from any part of
the network and guarantee that they transit independently to their destination. Notable
protocols are IP, ICMP, IGMP

• Transport: The transport layer is responsible for host-to-host communication, whether
on a local network or a remote network divided by routers. The most commonly used
Transport Layer protocols are TCP and UDP.

• Application: It takes into account the intricacies of data formatting and presentation.
This layer makes use of the preceding layers’ functionality to send messages to distant
processes and to allow our programs to receive packets. HTTP, the internet’s most
famous protocol, belongs to this layer.

Data is transmitted between hosts using the TCP/IP principles and layers. When data
is sent from the Application layer to the TCP/IP model’s lower layers at the transmitting
machine, layer protocols include some sort of header information and the Link layer includes

1.3 A brief overview of the TCP/IP Protocol Model 8

a trailer (Encapsulation). Finally, the data is transmitted through a network cable as a stream
of bits. When data is received at the receiving computer, each layer removes the header
information and uses it to transfer the data to the next higher layer or to reassemble the data
(Decapsulation). Finally, the data sent from the transmitting computer is handed up to the
receiving computer’s application layer.

From here on, when we refer to a packet as proto1/proto2/.../proton, we mean a packet
having several layers of encapsulation, with the first packet header being of type proto1,
the second being of type proto2, and so on. We will be later using this notation to describe
Protocol-Specific Neural Network Models and Datasets.

1.3.2 TCP/IP Protocols

We will briefly cover the most critical protocols, and their headers, in the TCP/IP stack.

Ethernet (Link Layer)

Ethernet specifies the format of the data at the data connection layer, including the header
and trailer. The protocol is established in the venerable IEEE 802.3 standard. It uses MAC
Addresses to uniquely identify communicating hosts.

ICMP (Internet Layer)

The Internet Control Message Protocol (ICMP) is used in order to forward error messages
and control information across different hosts in the network.

IPv4/IPv6 (Internet Layer)

A collection of rules that govern the manner in which data should be transmitted across
a public network (Internet). Frequently, it is used in combination with the transmission
control protocol (TCP). The IP Addressing scheme is a part of the IP protocol. By using
IP Addresses, hosts are able to refer to themselves or other hosts of the network. IPv6 is
a newer more sophisticated version of IPv4, yet both are used interchangeably to maintain
backward compatibility.

ARP (Link Layer)

ARP supports the IP protocols by associating the IP addresses of various hosts in our network
with their MAC Address. When connecting with one another, Arp Clients do inquiries

1.4 Attacks against the TCP/IP Model 9

("Who owns the X IP address") to determine where to send packets (to which MAC Address
destination).

UDP/TCP (Transport Layer)

Both enable apps or processes to communicate with one another and introduce the concept
of a port (a unique identifier for different processes running on a host machine). Packets are
delivered to the relevant process by means of the port. The two protocols are functionally
distinct: TCP is more trustworthy (it does not drop packets), provides congestion control,
and establishes a connection before any real communication takes place, whereas UDP is
connection-less, less reliable but significantly quicker.

SSL/TLS (Transport Layer)

Secure Sockets Layer (SSL) is a commonly used security technology that enables privacy and
data confidentiality for Internet interactions. TLS (Transport Layer Security) is an improved,
more secure version of SSL. SSL/TLS runs on top of the TCP Protocol.

DNS (Application Layer)

The Domain Name System (DNS) makes it easier for the general public to explore the
Internet by linking familiar domain names to the numeric network addresses needed to send
data over it.

HTTP (Application Layer)

The Hypertext Transfer Protocol (HTTP) is a TCP-based protocol for transmitting hypermedia
content from a server to a client. When we access a website via the browser (client), HTTP
is utilized to retrieve the website’s data from a remote server. The protocol is composed of
two sorts of packets: a request and a response. When a request is sent, the TCP connection
between the server and the client is maintained until the complete HTTP response is sent.

1.4 Attacks against the TCP/IP Model

Since we’ve already discussed the TCP/IP concept, we’ll now go into numerous forms of
attacks on the protocols themselves.

1.4 Attacks against the TCP/IP Model 10

1.4.1 DoS Attacks

A Denial-of-Service (DoS) attacks attempt to bring a computer or network to a halt, rendering
it unreachable to its users. They can thus be classified as Interruption attacks. Fifteen year
old Hacker "mafiaboy" is documented as the first person ever to instigate a DoS attack [15].
Initially, he targeted academic websites before focusing on bringing down big websites using
his tools. He claimed he did it to get attention in the hacking community. Since then more
and more types of DoS attacks are added into the hackers’ arsenal, we’ll go through some of
the more prevalent ones here.

The Ping Of Death

A vulnerability in some target systems allows for Ping of Death (PoD) attacks[16]. IP
payloads above 65KB might result in a memory overflow in early TCP/IP implementations,
which were unable to manage such a large payload. When a victim receives numerous similar
packets, the assaults are carried out in the same way. Despite the fact that newer systems
have been patched to address these kinds of security issues, the attacks remain important
since vulnerable hosts still exist.

SYN Flood

The TCP protocol is establishing a connection before attempting to send any data packets.
The connection establishment is achieved by implementing the TCP SYN-ACK handshake.
The process is described bellow:

1. Client sends a SYN message to the Server

2. Server responds with a SYN-ACK packet and stores client information locally

3. Client responds with an ACK packet and thus the handshake is complete

To carry out the attack[17], the attacker takes advantage of the handshake’s second phase.
They begin by sending SYN packets to the server. which stores new client data for each new
SYN packet, and then ignores the servers’ SYN-ACK response. Thus, the server continues
to store new client information in its memory until there is insufficient memory available to
serve legitimate users.

Slowloris

Slowloris[18] exploits HTTP in the same manner as SYN Floods take advantage of the TCP
protocol. It communicates with a server using HTTP Requests and then keeps the connections

1.4 Attacks against the TCP/IP Model 11

open rather than terminating them. This is accomplished by sending incomplete packets that
the server successfully processes (robustness) and is fooled into believing the remainder of
the packets will follow. At some point, the server will run out of connections and will refuse
to serve additional customers. Slowloris is distinct from other denial-of-service attacks in
that it transmits packets at a considerably slower rate.

1.4.2 Malware

Malware (short for malicious software) is a colloquial phrase that refers to a wide variety of
destructive or intrusive software types, including the following:

• Computer Viruses Software that spreads between different hosts. Their activation can
only be triggered by their host.

• Worms Which are very similar to Computer Viruses. However their activation can be
initiated independently of their host.

• Ransomware The attack consists of two steps. First the attacker encrypts the files on
the victim’s device, and then it demands a ransom in order to decrypt it.

• Trojans Malware that tries to avoid detection by masquerading as a benign packet (or
program, etc.).

It can be executable code, scripts, active content, or other applications. It is therefore usually
transmitted via the data section of application (or transport) layer protocols. In addition to
stealing, decrypting, or erasing critical data, these Malware can also monitor users’ computer
activities and spy on them. Malware attacks can be classified as Modification and Interception
type. However, certain malware may also be classified as Fabrication since they can obtain
user data and then use it to impersonate the user.

1.4.3 Design/Implementation Exploits

The following attacks were only feasible as a result of poor protocol design or implementation.

Heartbleed

An attacker might obtain access to memory data via a vulnerability in the OpenSSL library
(which implements the SSL/TLS protocols). The attack was made feasible by abusing the
SSL/TLS protocol’s Heartbeat feature[19], which enables connections to remain active for

1.4 Attacks against the TCP/IP Model 12

an extended period of time without requiring fresh connection requests[20]. The Heartbleed
TLS extension works as follows:

1. A client sends a message to the server requesting to replay the contents of the message.
The packets also includes the length of the message.

2. The server responds back with the given text

However, the OpenSSL Heartbeat implementation requested exactly the number of bytes
specified in the heartblead’s payload (Figures 1.1 and 1.2). This implies that if the client’s

1 /****************************/
2 /** snippet from n2s macro **/
3 /****************************/
4 /* Payload can be up to 64KB , defined by user*/
5 buffer = OPENSSL_malloc (1 + 2 + payload + padding);
6 bp = buffer;
7 ...
8 /* Moving payload size to bp , could cause overflow */
9 memcpy(bp, pl , payload);

Figure 1.1 Heartbleed: Dangerous memcpy call

10 hbtype = *p++;
11 /*n2s contains an unsafe memcpy call*/
12 /* operation which allows memory leakage */
13 n2s(p, payload);
14 pl = p;
15

Figure 1.2 Heartbleed: Calling n2s without checking
payload length

16 /* Read type and payload length first */
17 if (1 + 2 + 16 > s->s3 ->rrec.length)
18 return 0; /* silently discard */
19 hbtype = *p++;
20 /* safe memcpy operation */
21 n2s(p, payload);
22 if (1 + 2 + payload + 16 > s->s3->rrec.length)
23 return 0; /* silently discard per RFC 6520 sec. 4 */
24 pl = p;
25

Figure 1.3 Heartbleed: Vulnerability Fix

real text is less than the given quantity, the server will attempt to transfer more bytes which
it would get from its own memory, thus transmitting sensitive data to the attacker. A later

1.4 Attacks against the TCP/IP Model 13

fix was made shortly after the Attack was published (Fig. 1.3), however a large number of
attackers exploited it in order to get access to personal data.

Downgrade Attacks

The TLS protocol supports backward compatibility by allowing clients or servers to down-
grade to an earlier SSL/TLS version during the negotiation process[21]. An attacker can
conduct a Man in the Middle attack (by inserting himself between a client and the server) and
then send bogus downgrade requests to the clients. These downgrade requests may result in
the two communicating parties utilizing older versions of protocols known to be vulnerable
to a variety of vulnerabilities (for example POODLE for SSLv3).

FREAK Vulnerability

An additional TLS vulnerability[22]. It is based on some legacy OpenSSL capability, the
EXPORT Ciphersuites. These ciphersuites enabled users to utilize smaller cryptographic
keys (512 bits) with the RSA ciphersuite. Attackers can factor the RSA modulus of 512 bit
integers reasonably easily on current computer systems. An attacker may easily use a MiTM
attack to insert himself between the client and server, alter the initial client TLS message
(CLIENT HELLO) to request EXPORT RSA security, and then factor the server’s 512 bit key.
Finally, the attacker can get the Master Key, which is utilized for all further communication.

1.4.4 Tracing such attacks

It is obvious that these assaults have several traits, which may be utilized to track them down
even if we had no prior knowledge of them. For example, a DoS assault may be identified by
the large amount of packets traveling over the network, or by the unusually high number of
open connections, as is the case with Slowloris. However, attacks such as the Ping Of Death
can also be recognized by inspecting header data (payload size > 65K).

On the other side, malware may be identified by looking for programs or code embedded
in the payload of the packets. As a result, techniques such as malware fingerprinting are
employed. However, they are not always simple to identify since hackers may modify the
message’s structure or wording (for example by using escape characters).

Finally, by examining the headers of the packet, attacks such as Heartbleed, Downgrade
Attacks, and Freak may be recognized. Freak may be tracked if, for instance, a software
recognized that employing 512 cipher keys in conjunction with TLSv2.0 is exceedingly rare.
Similarly, a software may have detected a Heartbleed attack by noticing that the length of a

1.4 Attacks against the TCP/IP Model 14

TLS Heartbeat message differed from the length stated on the packet. As a result, packet
header analysis is required to detect and characterize such irregularities in packet data.

The next chapters will explore how combining machine learning and classical IDS may
be used to trace both known and unknown threats using packet header and traffic analysis.

Chapter 2

Intrusion Detection Systems

An IDS is an acronym for "intrusion detection system". An intrusion is defined as unau-
thorized access to information within a system that jeopardizes its credibility, security, or
performance. On the other side, the detection system is a defense mechanism for identifying
such unlawful behavior[23][24]. In general an IDS is a monitoring tool that continuously
analyzes host data for any behavior that violates the security policy and jeopardizes its
confidentiality, integrity, and availability.

While IDS are meant to passively monitor traffic and raise warnings when suspicious
traffic is discovered, Intrusion Prevention Systems are designed to actively attempt to prevent
the attack from succeeding. Intrusion Prevention Systems (IPS)[25] are a novel approach
to network defense that effectively combine the firewall and intrusion detection techniques.
This proactive approach prevents attacks from entering the network by examining various
data records and the detection behavior of pattern recognition sensors. When an attack is
identified, intrusion prevention first attempts to take action (block the incoming malicious
data) and then it logs the respective alerts.

This thesis will be mostly concerned with identifying threats (IDS). The system’s response
to discovered threats will not be discussed here.

IDS can be classified based on the manner of its deployment or detection methods[26].
We will be reviewing those classifications in the next sections.

2.1 Deployment method based IDS

Based on whether the IDS are deployed on the hosts of the network itself we can distinguish
the into two categories: a) Host-based intrusion detection system (HIDS) and b) Network-
based intrusion detection system (NIDS).

2.2 Detection Methods 16

2.1.1 Network-based Intrusion Detections Systems

NIDS are intelligently distributed sensors that passively monitor traffic passing through the
devices on which they are installed. NIDS can be hardware devices or software programs that
connect to a variety of network media depending on the vendor. NIDS frequently features
one network interface for promiscuous listening to network talks and another for control and
reporting [27].

2.1.2 Host-based Intrusion Detections Systems

On the other hand, HIDS examines system behaviour for signals of odd activity and operates
on the host. To identify changes, Host-based IDSs often monitor running processes, and
memory usage (as well as changes in the filesystem such ass permission edits, file creations,
etc). By itself, a host-based IDS is not a full solution. Although it is rational to monitor the
host, there are some drawbacks:

• It influences the host’s performance

• Attacks can be detected only once they have affected the host

• It must be installed on all hosts that require intrusion prevention and detection.

In order to combine their strengths, host-based and network-based IDS are frequently em-
ployed simultaneously[28].

2.2 Detection Methods

HIDS and NIDS can both utilize signature-based or anomaly-based detection methods,
depending on the threat. For a more complete approach, some IDS solutions can even
combine the two detection approaches.

2.2.1 Signature Based

Signature-based intrusion detection systems (IDS) are designed to identify and block attacks
based on the patterns and sequences of traffic that arrive on a network such as network headers
and data that match known malware. In general, this form of detection detects malicious
patterns by looking for signatures in a given set of indicators (Indicators of Compromise -
IOCs[29]) such as:

2.2 Detection Methods 17

• Fluctuating amounts of requests and reads in the company’s data Network traffic that
goes through seldom utilized ports

• Suspicious use of administrator or privileged account passwords

• Unusual traffic with countries with whom no packet exchange has occurred previously

• The network is experiencing abnormally high traffic levels.

• Probing or brute-force attacks are indicated by strange log-ins and network access.

• On the system, there are unidentified files, applications, and processes.

In general, the inability of signature-based IDS systems to identify unknown attacks is a
significant disadvantage. In order to escape detection, malicious actors might simply alter
their attack sequences in malware and other sorts of assaults. Furthermore, those systems,
are completely ineffective when dealing with new zero-day attacks.

2.2.2 Anomaly Detection

The "behavior-based IDS" hypothesis of Anomaly IDS[30](AIDS) proposes to accurately
define a normal life profile. An anomaly is defined as a deviation from this standard profile. It
is possible to predetermine acceptable behaviour or to learn about it through the requirements
and criteria that the system administrator defines. There are two stages to the development of
Anomaly-based IDSs: training and testing. A model of typical behavior is first learned from
the usual traffic profile, and then a fresh data set is utilized in the testing phase to check if the
system can generalize to previously unknown incursions. There are three major techniques
when designing AIDS[31]:

• Statistics-based techniques: This technique makes an attempt to identify dangers based
on the statistical chance of an event occurring. Threats are defined as events with a low
likelihood of occurring.

• Knowledge-based techniques: This technique demands the establishment of a knowl-
edge base that correctly reflects the genuine nature of events, in which deviations from
the norm are deemed incursions. Knowledge-based techniques are also known as the
Expert-System Method.

• AIDS based on machine learning techniques: Anomaly-based IDS systems have been
developed using machine learning techniques. Using these methods, the amount of
human intervention required is maintained to a minimum.

2.3 Metrics 18

2.3 Metrics

Numerous indicators have been developed to assess IDS’s performance. Most of them are
based on the Confusion Matrix (see Table 2.1), a two-dimensional matrix which depicts the
classification results for the overall dataset. Those results are composed of the following
metrics:

• True Positives (TP): The classifier correctly classified the data occurrences as Attacks.

• False Negative (FN): It was assumed mistakenly that the data instances were Normal.

• False Positive (FP): Examples of data were wrongly identified as an assault.

• True Negative (TN): The incidences were classified appropriately as Normal.

Confusion matrices aren’t particularly beneficial when it comes to comparing IDSs.
The confusion matrix variables, however, are used to construct different performance
indicators[32].

• Precision (PR): It is the percentage of predicted Attacks that are correctly anticipated
to be Attacks.

PR =
T P

T P+FP

• Recall: It is the percentage of samples classified properly as Attacks to all samples
classified as Attacks. Additionally, the term Detection Rate (DR) is used.

Recall = DR =
T P

T P+FN

• False alarm rate (FAR): It is referred to as the false positive rate. It is defined as the
ratio of wrongly predicted Attack samples to all Normal samples.

FAR =
FP

FP+T N

• True negative rate (TNR): It is defined as the percentage of correctly classified Normal
samples in comparison to all Normal samples.

T NR =
T N

T N +FP

• Accuracy : It is the ratio of properly classified events to the total number of occurrences.
It is sometimes referred to as Accuracy of Detection or Classification Rate and is only

2.3 Metrics 19

useful as a performance statistic when a dataset is balanced.

Accuracy =
T P+T N

T P+T N +FP+FN

• F-Score: It is a metric for determining the reliability of a test.

FM =
2

1
PR + 1

DR

Table 2.1 IDS Confusion Matrix

Predicted

Actual
Attack Normal

Attack True Positive (TP) False Negative (TP)
Normal False Positive (TP) True Negative (TP)

According to the bibliography, 22 measures are generally used to evaluate IDS empirically.
With so many indicators available, evaluating the performance of different IDS is difficult, as
authors analyze each IDS differently. Very few, if any, studies have attempted to construct
a de facto metric system for comparing IDS techniques[32][33]. We will use the metrics
mentioned in this part to evaluate the performance of the IDS we created in this thesis.

Chapter 3

Machine and Deep Learning

As currently defined, machine learning is a field of research that focuses on the use of data
and algorithms to simulate how humans learn, gradually improving its accuracy.

The technique is fundamentally based on two key concepts:

• Self-Learning: The process of analyzing data and identifying patterns through the use
of algorithms. Unlike conventional programming, which relies on explicit rules and
decision trees defined by the programmer to reach a conclusion, machine learning
relies on data to develop a decision model. Machine learning makes use of complex
algorithms, trial and error, probabilistic reasoning, and other techniques. Thus, the
decision model is formed based on the substance of the incoming data, rather than on
pre-defined human-programmed criteria.

• Improvement through Experience: Machine learning improves its predictions through
data exposure by evaluating the success or failure of past attempts. As a result, machine
learning accuracy is highly dependent on data in order to modify and enhance the
model’s weak assumptions.

3.1 Concepts

By analyzing the success or failure of prior attempts, machine learning improves its predic-
tions. As a result, machine learning accuracy is highly dependent on data. The following are
the most prevalent challenges that we are attempting to answer with machine learning:

• Regression: Attempting to guess the output variable when it is a real or continuous
value. For example, attempting to predict the price of a certain stock based on the
performance of comparable stocks in the past.

3.1 Concepts 21

• Classification: Problems where the output is a category. In such problems the point is
to "categorize" the data. For instance, classifying a network packet as a threat or as
benign.

This section will look at aspects machine learning, specifically the datasets, feature selection,
and training phase. In general, datasets are made up of rows and columns. The features are
the accessible columns (for example, "temperature", "date", and so on), whereas the label is
the value that the model is attempting to predict (for example, tomorrow’s stock price, the
"niceness" of a network packet, and so on).

3.1.1 Dataset

The word "Dataset" refers to the process of collecting or producing the data that will be
utilized as input to the model during training. Data can either be presented in a structured or
an unstructured form. Structured data is data that has been organized, defined, and labeled
and can be arranged in rows and columns, whereas unstructured data lacks any organizational
structure that may be arranged in a table. Numbers, dates, booleans, and strings are all
instances of structured data whereas songs, videos, images are all instances of unstructured
data. Unstructured data, as predicted, demands far more storage space than structured data.
Data gathering is a critical phase in machine learning, as erroneous, skewed, or inaccurate
data might result in undesirable or unexpected outcomes.

Data can be obtained or developed in-house or derived from publicly available datasets. In
any case, raw data may be incomplete, include mistakes, or be missing portions. As a result,
pre-processing of data is required before it can be used by the machine learning algorithm.
Data cleaning, data imputations, oversampling, data integration, and data normalisation are
all examples of pre-processing techniques. Data is then spit into three segments:

• The Training dataset: the dataset used to fit the model’s parameters.

• The Validation dataset: A subset of data used to modify the model’s hyperparameters
while also giving an unbiased assessment of the model’s fit to the training data. Valida-
tion datasets can be used to improve the model’s regularisation. When the error rate
of the validation data increases, training is halted, as this indicates that the model has
been over-fit to the training dataset.

• The Test dataset: It is utilized only after the model has been fully trained to evaluate
the final model. To do this, the final (trained) model classifies instances from the test
set. These predictions are compared to the real classifications of the cases to determine
the model’s accuracy.

3.1 Concepts 22

3.1.2 Feature engineering

It’s possible that the raw data is incomplete or noisy. To be of any value to machine learning,
raw data must be processed and cleansed before usage. Feature Engineering is a critical step
in machine learning since it helps minimize data dimensionality and isolate the most critical
and useful aspects of the dataset, all while simultaneously reducing computing burden. The
practice of feature selection is used in feature engineering to exclude from the dataset any
characteristics that would increase computation at no practical benefit. To further simplify
data processing, the feature extraction technique merges some of the features together into
new ones.

3.1.3 Data Preprocessing

After picking a set of features for training the models, the following step is to convert and
parse the feature values so that the machine can readily understand them. Some commonly
used preprocessing techniques are presented bellow.

One-Hot Encoding

It is rather usual for a dataset to have nominal categorical values. One-Hot Encoding (OHE)
is a frequently used approach for such values. OHE divides the original feature into as
many features as the nominal variable’s maximum number of potential values . Instead of
setting the value of the feature to its nominal value for each row of data, we place a one or
a zero in the respective newly created column for each row. For example, let us consider a
datasset where a feature is called "protocol_type" and it contains values such as "tcp", "udp",
"icmp". By using OHE this feature is split into three distinct ones: "protocol_type_tcp",
"protocol_type_udp", "protocol_type_icmp". A row where the value for "protocol_type" was
set to "tcp" will now be transformed into a row where the values of "protocol_type_udp" and
"protocol_type_icmp" are set to 0 and the value of "protocol_type_tcp" is set to 1.

Standardization

Standardization’s ultimate purpose is to reduce all characteristics to a single scale without
altering the range of values. Standardization reduces the mean value to zero and creates a
distribution with a unit standard deviation. For every feature, its values are calculated using
the following formula:

X ′ =
X −µ

σ

where µ is the features’ mean value and σ their deviation.

3.1 Concepts 23

Normalization

Normalization, like Standardization, attempts to rescale a collection of supplied values.
However, it attempts to fit them into a range of values between 0 and 1. The equation applied
to every value is the following

X ′ =
X −Xmin

Xmax −Xmin

where Xmax and Xmin are the maximum and minimum values in the dataset for this feature
respectively.

3.1.4 Learning

All machine learning tasks may be classified according to one of the following methodologies:

Supervised learning

Supervised learning is a technique in which a Model is given known input-output pairs and
then attempts to analyze the relationship between the input and output data to learn about the
underlying patterns linking the inputs and outputs. In order to develop the model, supervised
learning requires a labeled dataset, with each object having labeled input and output values
for model training. In order to categorize packets, the IDS shown in the last chapter employs
Supervised learning.

Unsupervised learning

To produce new labels for probable outputs, Unsupervised Learning studies the relationships
between input variables and identifies significant structure and patterns. Unsupervised
Learning is a great tool to utilize when looking for relevant patterns and groupings in data,
generating features, and doing exploratory work. Unsupervised learning is performed on
unlabeled data.

Semi-supervised learning

A combination of unsupervised and supervised learning techniques that makes use of a
big amount of unlabeled data in conjunction with a limited amount of labeled data. The
model may be trained using labeled data and then used to categorize and discover trends for
unlabeled cases.

3.2 Machine Learning Algorithms 24

Reinforcement learning

Highly similar to Ivan Pavlov’s Classical Conditioning theory. The word ’conditioning’
refers to the process through which a previously unconnected stimulus and reaction become
correlated via learning. A fitness function is used in Reinforcement Learning to reward
highly efficient agents (algorithms). The agents improve their efficiency by generating a
result several times and then being or not being rewarded for it.

3.2 Machine Learning Algorithms

To demonstrate the application of the previously stated principles, we will examine two of the
most extensively used machine learning algorithms, Naive Bayes and K-Nearest Neighbors.

3.2.1 Naive Bayes

Thomas Bayes, an 18th century mathematician and theologian, invented Bayes’ Theorem,
which was originally published in 1763[34]. It can be expressed as:

P(H|E,c) = P(H|c)P(E|H,c)
P(E|c)

(3.1)

which practically calculates the probability of an hypothesis H in light of new evidence E and
prior setting c. The equation expresses the degree of belief in an assertion or propositions
under the premise that other premises are true. The process of deducing attributes about a
population or probability distribution from data is known as inference. To solve classification
queries, the Naive Bayes’ Classifier turns a given dataset into frequency tables and determines
the posterior probability (training phase). Because the classifier presupposes that all features
are unconnected to one another (thus the term "naive"), it is unable of comprehending or
learning about the linkages and connections that exist between the features.

3.2.2 K-Nearest Algorithms

Another widely popular categorization approach is k-Nearest Neighbors (kNN). This is
a technique for identifying new data using supervised learning based on its similarity to
previously identified data. Although kNN is mostly used for classification, it may also be
used for regression. Each row of data is treated as a distinct point in a multidimensional field
by the algorithm. It then attempts to connect any new points with the class (or label) of the
nearby points.

3.3 Deep Learning 25

3.3 Deep Learning

Deep Learning is regarded as the evolutionary stage of machine learning. A deep learning
model is supposed to examine data indefinitely using a logical framework similar to how a
human would by using a technique referred to as Neural Networks (NN).

3.3.1 Neurons

We shall cover the notion of a Neuron before attempting to describe Neural Networks. A
neuron produces a single output y1 from multiple inputs x1,x2, . . . ,xn (see Fig. 3.1).

x1

x2

x3

x4

w1
w2
w3
w4

y1w1

Figure 3.1 Neuron example

Each input has a weight attached with it w1,w2, ...,wn. Each weight is a number indicating
the relevance of the input to the output. When given an input the Neuron may or may not fire
a value based on the activation function of the neuron. In general the neurons output may be
defined as α = f (w · x+b) where α is the output, f the activation function, w and x are the
weight and input vectors and therefore w · x = ∑ j w jx j. Finally, the negative threshold value
or b is the neurons’ bias.

A neuron is quite similar to how a neuron brain cell works. Whenever the stimuli are
strong enough, the neuron outputs 1 similarly to how the neuron cell fires through its axon
based on its dendrites input. For instance, let’s consider the activation function 3.2. If the
weighted total of each input is larger than a set threshold, the output is 1 (the neuron "fires"),
otherwise it is 0. 1, if x ·w−b > 0

0, otherwise
(3.2)

A neuron that determines whether a person would laugh has assigned the three inputs "eat-
ing popcorn", "viewing a movie", and "studying" weights of 0.2, 0.5, and 0.05, respectively,
and the laughing threshold is set to 0.6. If this individual consumes popcorn while studying,
they will not chuckle, as the perceptron will not fire 0.2∗1+0.5∗0+0.05∗1 = 0.25 < 0.6.

3.3 Deep Learning 26

If, on the other hand, it decides to watch a movie rather than study, the weighted input will be
more than the threshold, causing the person to chuckle. 0.2∗1+0.5∗1+0.05∗0= 0.7< 0.6.

It is evident that by increasing the number of inputs, altering the weights, raising or
reducing the thresholds and using different activation functions we may mimic various
decision-making models. However, a single Neuron can not fully handle more complex
scenarios.

3.3.2 Neural Networks

A Neural Network (NN) is comprised of sets of neurons forming three different types of
layers. The input layer is located to the left and the neurons included inside it are referred
to as input neurons. The output layer, on the right, includes the output neurons. Finally,
the buried layers are referred to as the hidden layers (See Figure 3.2). These networks are
referred to as feed-forward neural networks due to the fact that the output of one layer is
utilized as the input for the subsequent layer.

x1

x2

x3

x4

Input
Layer

Hidden
Layer #1

w1,1
w1,2
w1,3
w1,4

w2,1
w2,2
w2,3
w2,4

w3,1
w3,2
w3,3
w3,4

w4,1
w4,2
w4,3
w4,4

Hidden
Layer #2

w1,1
w1,2w2,1
w2,2w3,1
w3,2w4,1
w4,2

y1

Output
Layer

w1,1
w2,1

Figure 3.2 Neural Network example

The following is the general notion of training Neural Networks:

1. Assign values to input layer.

2. Observe the output layer’s output.

3. Determine the error.

4. Adjust the weights and biases of each neuron.

5. Repeat

3.3 Deep Learning 27

The error, or cost, is a metric indicating how "well" a neural network performed in
relation to the training data and the predicted output. An example cost function is the Mean
Square Error (MSE) presented on Eq. 3.3.

C(w,b) =
1

2n ∑x||y(x)−α||2 (3.3)

where vectors w,b are the weight and bias vectors while n is the number of inputs. y(x) is the
valid output for input x whereas α is our predicted output. As expected, MSE is minimized
when y(x) is close to α .

3.3.3 Activation Functions

There are several activation functions from which to choose depending on the sort of problem
that the Neural Network is seeking to solve. The following are some of the most often used.

Binary Step

The Binary Step activation function (Fig. 3.3(a)) is threshold-dependent. When the neuron’s
estimated value reaches this threshold, the activation function sends a 1, otherwise it transmits
a 0. This function is predominantly used for binary classification problems.

Sigmoid

The Sigmoid function (Fig. 3.3(b)) normalizes the output of each Neuron. It is a subset of
the logistic function and is often expressed as σ(x) = 1

1+e−x .

Rectified Linear Unit

The result of this function (Fig. 3.3(c)) can vary from 0 to infinity for positive inputs, however
when the input is zero or a negative number, the function returns zero. It is a frequently used
activation function that is mostly used to address classification problems.

SoftMax

Softmax (Fig. 3.3(d)) is an extension of logistic regression that may be used for multi-class
classification. Its formula is remarkably similar to that of logistic regression’s sigmoid
function.

3.3 Deep Learning 28

(a) (b)

(c) (d)

Figure 3.3 Activation Functions: (a) Binary Step (b) Sigmoid (c) RELU (d) SoftMax

3.3 Deep Learning 29

3.3.4 Training

The primary goal of training a neural network is to decrease the error metric by modifying
the weight and bias components appropriately.

Introduction to Gradient Descent

Gradient descent (GD) is an Optimization algorithm which attempts to trace local minimum/-
maximum by iterating over some steps. A portion of the notation described below is based
on Michael Nielsen’s excellent introduction to Neural Networks blog piece[35].

Before attempting to discuss the mechanics of gradient descent with a large number of
variables (w1,w2, . . . ,wn,b1,b2, . . . ,bn), we will examine how to minimize the output of a
simple three-dimensional function z = 6x2 +2y2 (Fig. 3.4).

Figure 3.4 Function z = 6x2 +2y2

When a small amount of movement ∆x,∆y is made in the x,y directions, the value of z
changes as follows:

∆z =
∂ z
∂x

∆x+
∂ z
∂y

∆y (3.4)

3.3 Deep Learning 30

Given that we are seeking to reduce the value of z (the error), we must ensure that the
direction change resulted in a negative value of ∆z. As a result, we must devise a method for
expressing the change in the z variable in terms of the vector of changes and z’s gradient (the
rate of change of the z function). Let us begin by determining the formulae for the final two:

• Changes’ vector: ∆v = (∆x,∆y)⊺

• z’s Gradient: ∇z = (∂ z
∂x ,

∂ z
∂y)

⊺

Now that we defined ∆v and ∇z we can finally express Eq. 3.4 as

∆z = ∇z ·∆v (3.5)

Since ||∇z||2 ≥ 0, we can select values of vector changes so as

∆v =−γ∇z (3.6)

Where γ > 0. γ , also called step or learning rate, determines the rate at which we will
progress toward the ideal vector changes. Setting its value to a very large number may cause
the local minimum to be skipped, whilst setting it to a tiny value may cause the minimum to
take an inordinate amount of time to attain.

It is evident that by combining Eq. 3.5 and 3.6 we prove that produced ∆z values will
always be negative:

∆z = ∇z ·∆v =−γ∇z ·∇z =−γ||∇z||2 ≤ 0 (3.7)

Finally, we may construct an iterative function that locates a local minimum given a
collection of vector changes. Since ∆v = v′− v where v′ the new position in the plane, we
may write an iterative function as follows:

v′ = v− γ∇z (3.8)

Example

Given the example at Img. 3.4 (z = 6x2 +2y2) and starting from a point A (10, 10) in the plot
we may attempt to approach the local minimum by calculating the gradient:

∇z = (
∂ z
∂x

,
∂ z
∂y

)⊺ =

[
12x
4y

]
.

3.3 Deep Learning 31

If we set γ = 0.1 then

A′ =

[
10
10

]
−0.1∇z(10,10)

A′ =

[
10
10

]
−0.1

[
120
40

]

A′ =

[
10
10

]
−

[
12
4

]

A′ =

[
−2
6

]
The value of z at point A was equal to z(10,10) = 600−200 = 400. At point A’ the value of
z is decreased z(−2,6) = 96. If we repeat the process one more time we are going to retrieve
point A′′ (0.4, 2.8) which produces z(A′′) = 16.64

Using Gradient Descent to train DL Models

Due to the fact that Equation 3.8 operates on vectors of arbitrary length, it may be used to
determine the local minimum of functions with more than two variables. For example, if z is
a function of n variables v1,v2, ...,vn then:

∇z = (
∂ z
∂v1

,
∂ z
∂v2

, . . .
∂ z
∂vn

)

.
Let’s switch back to the original problem, calculating the minimum cost for a given set of
weights w and biases b. We may determine the optimal weights for each neuron to neuron
connection using the equation 3.8. The function that assigns a new weight for the connection
i between two neurons in order to minimize the cost C can be expressed as:

w′
i = wi − γ

∂C
∂wi

The same function can also be used to calculate the bias j of a neuron

b′j = b j − γ
∂C
∂b j

Numerous adaptations to the gradient descent approach have been developed; in this
thesis, we will use the Adam Optimizer[36]. Adam is a widely used method in the field

3.3 Deep Learning 32

of deep learning because it produces high-quality results quickly and outperforms a large
number of other optimization techniques.

Backpropagation

We’ve examined how gradient descent works and how it can be used to train Neural Networks
thus far, but we haven’t explored how to compute the gradient of the cost ∇C with regards
to every weight and bias value in the network. Backpropagation approach tries to calculate
the needed list of C derivatives by starting at the output layer and gradually progressing
backwards towards the hidden and input layers.

We will consider the output (activation) of the jth neuron at the lth layer to be expressed
as α l

j = f (zl
j) and zl

j = ∑k wl
jkal−1

k +bl
j. Also, wl

jk is the weight of the link of the kth layer of
the l −1 layer to the jth layer of the l layer, furthermore bl

j is the bias of the neuron. It is
evident how changes in zl

j affect al
j and how the latter is influenced by the changes of the

respective weights of the links between the previous layer and this neuron. Therefore the
output of the neuron and consequently its error, are also affected by those factors. Thus, by
using the chain rule, we can state that:

∂C
∂wl

jk
=

∂ zl
j

∂wl
jk

∂α l
j

∂ zl
j

∂C
∂α l

j
(3.9)

and
∂C

∂α
(l−1)
k

=
n−1

∑
j=0

∂ zl
j

∂α
(l−1)
k

∂α l
j

∂ zl
j

∂C
∂α l

j
(3.10)

Calculation of the terms ∂C
∂α l

j
and

∂α l
j

∂ zl
j

is fairly easy and we can also determine that
∂ zl

j

∂wl
jk
=

al−1
k . Therefore we have everything we need in order to calculate ∂C

∂wl
jk

. The steps of the

backpropagation algorithms are the following:

1. Insert input data to the input layer

2. Retrieve the output vector from the output layer

3. Calculate the error C (via Cost Function)

4. Use Equation 3.9 to determine the derivatives of C with respect to the weights of all
the links emanating from neurons in layer l −1 to layer l.

3.3 Deep Learning 33

5. Use Equation 3.9 in combination with Equation 3.10, and repeat the computation for
each one of the preceding layers until all components of the ∇C gradient have been
determined

6. Repeat the same process in order to identify the gradient with regards to the biases
(the bias derivatives can simply be calculated by exchanging the weight terms wl

jk with
those of the bias bl

j in equations 3.9, 3.10)

Given that we now know ∇C, we may utilize it to create new weights and biases that
attempt to lower the total error across a large number of iterations. This summarizes the
neural network training procedure.

3.3.5 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of artificial neural network that uses sequential
or time series input to learn. Their distinguishing characteristic is their memory, which
enables them to adjust the current input and output based on past data. These sorts of Neural
Networks are generally employed to solve problems involving text, such as Natural Language
Processing (NLP) and language translation.

RNNs compute gradients using the Backpropagation Through Time (BPTT) method[37],
which is slightly different from classic backpropagation in that it is tailored for sequence data
but follows the same concepts.

For instance, Image 3.5 depicts an RNN. On the left, we can see how the input xi is
relayed through hidden layer A, which outputs the value hi and also provides feedback to
itself. On the right of the illustration, the RNN is "unfolded" demonstrating how previous
outputs influence future judgments about the value of hi.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 3.5 Unrolling an RNN through time

Chapter 4

Machine Learning and Network
Intrusion Detection Systems

Network Intrusion Detection Systems (NIDSs) are critical tools for defending against in-
creasingly complex cyber threats. Signature-based NIDSs (Section 2.2) compare attack
signatures in order to identify a list of previously identified assaults. However, such systems
are incapable of identifying previously unknown attacks or novel versions of existing attacks.
NIDS can overcome the limits of signature-based IDS by using Machine and Deep Learning
methodologies and eventually evolving into anomaly-based detection systems. We will
be referring to such systems as Machine Learning - Network Intrusion Detection Systems
(ML-NIDS). An attack on a network is begun by one or more malicious packets. As a result,
the primary source of training data is labeled network traffic gathered from passive traffic
listeners or generated artificially. The following steps (Fig. 4.1) summarize the fundamental
methodology for training and detecting threats from intrusion detection systems:

1. Capturing internet traffic.

2. An existing threat detection system (signature-based) classifies packets depending on
their association with an attack.

3. Some processing is performed on the packets’ formatting (for example, Cisco’s Net-
flow) (steps 2-3 can be done in a different order)

4. We choose the features of the packets to train the machine learning model on (Feature
Selection).

5. The values of the features of the packets are preprocessed. As discussed previously,
depending on how we manage post-processing data, we can do Standardization or

35

Normalization. Methods such as One-Hot-Encoding may also be employed in order to
represent nominal categorical values.

6. The ML IDS is finally trained and its performance is evaluated.

7. From this point forward, ML-IDS either continues its training process (step 1) or
directly assesses incoming network traffic

Traffic Data

Collect

Assign
Verdict (label)

Feature extraction

Data Preprocessing

EvaluationTraining

Continue Training
Directly Analyze

new Traffic

Signature-Based IDS

Dataset Generation

ML Model

Figure 4.1 Training Process for ML-NIDS

Thankfully, new ML-NIDS do not need to go through the data collection and dataset
development phases since they already have access to a pool of openly accessible datasets.

4.1 Datasets 36

However, since those datasets are all unique, there is no practical method to compare either
the datasets or the machine learning solutions based on them. Not only can datasets vary in
terms of the sorts of data gathered (attack types, home vs office networks, normal vs artificial
traffic etc), but also in terms of the features that their creators deemed relevant for training.

In the following sections we will explore some of the most well-known current datasets
and also look at some unique techniques to integrating machine learning with NIDS.

4.1 Datasets

Typically, network packets are recorded in their original packet capture (pcap) format for
creating datasets. Using proper tools and methodologies, a collection of network data charac-
teristics is extracted from the pcap files, generating network data flows. As a consequence,
a data source of labeled network flows illustrating benign and malignant network behavior
is created. This section will cover the packets’ flow format and several well-known and
extensively utilized public NIDS datasets.

4.1.1 Packet Flow

By combining network packets into network flows, we may reduce the amount of data stored
and also get a better understanding of the network’s data traffic. Typically, packets are
organized into flows using the five-tuple: protocol, source/destination addresses, and ports.
Each flow is enhanced with additional data on traffic volume, statistics, and so on. Cisco have
managed to establish their own network flow format, which has now become an industry
standard: Netflow.[38].

Table 4.1 provides en excerpt from Netflow v9. Except for icmp and tcp flags, the majority
of the information in Netflow is about the size and rate of bytes and packets transferred. To
minimize confusion, we shall refer to network flows that diverge from the Netflow standards
as emphPacket Flows.

4.1 Datasets 37

Field Length Description
IPV4_SRC_ADDR 4 IPv4 Source Address
IPV4_DST_ADDR 4 IPv4 Destination Address
L4_SRC_PORT 2 Source Port (TCP/UDP)
L4_DST_PORT 2 Destination Port (TCP/UDP)
IN_BYTES var Number of incoming bytes
OUT_BYTES var Number of outgoing bytes
MIN_PKT_LNGTH 2 Minimum packet length
MAX_PKT_LNGTH 2 Maximum packet length
TCP_FLAGS 1 TCP flags in this flow

ICMP_TYPE 2
The type of the ICMP packet
in case this is an ICMP packet

Table 4.1 Netflow 9 fields - Example[6]

4.1.2 KDD99

The KDD99 dataset was generated in 1999 and has proven to be one of the most used
training datasets for ML-NIDS. There has been a lot of critique against this dataset, since it is
considered to be outdated and inadequate to deal with today’s standards and attacks[39][40].
Its features are presented on Table 4.2

Feature description type
duration length (number of seconds) of the connection continuous
protocol_type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g., http, telnet, etc. discrete
src_bytes number of data bytes from source to destination continuous
dst_bytes number of data bytes from destination to source continuous
flag normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0 otherwise discrete
wrong_fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous

Table 4.2 KDD Features[41]

4.1 Datasets 38

4.1.3 NSL-KDD

NSL-KDD is an improvement over the KDD99 dataset. Each instance in the training set
has information on a single session, which is separated into four sections: a) connection
characteristics b) content data c) time-related metrics d) host-based information. NSL-KDD
has the following benefits over the KDD dataset[42]:

• Excludes redundant records

• No duplicate records

• Reasonable number of flows

A short list of its features are provided on Table 4.3.

Feature description type
duration connection duration continuous
protocol_type protocol type discrete
service targeted network service type discrete
src_bytes number of bytes sent from source to destination continuous
dst_bytes number of bytes sent from destination to source continuous
flag the connection is normal or not discrete
land whether the connection is from/to the same host/port discrete
wrong_fragment number of “wrong” fragment continuous
urgent number of urgent packets continuous
count number of connections to the same host in the first two seconds continuous
serror_rate “SYN” error on the same host connection continuous
rerror_rate “REJ” error on the same host connection continuous
same_srv_rate number of of same service connected to the same host continuous
diff_srv_rate number of of different services connected to the same host continuous

Table 4.3 Features of the NSL-KDD Dataset[43]

4.1.4 Kyoto Dataset

There are 24 statistical characteristics in this dataset, 14 of which were extracted using
KDD99. There are no packet traces or payload information. The majority of implementations
based on this dataset are anomaly-based detection. Some example features are displayed on
Table 4.4.

4.1 Datasets 39

Feature Description Type
duration length (number of seconds) of the connection continuous continuous
protocol_type type of the protocol, e.g. tcp, udp, etc. discrete discrete
service network service on the destination, e.g., http, telnet, etc. discrete discrete
src_bytes number of data bytes from source to destination continuou discrete
IDS_detection number of triggered alerts discrete
Malware_detection type of malware found string
Label indicates wether this was an attack discrete

Table 4.4 Kyoto Dataset Features

4.1.5 UNSW-NB15

The Australian Centre for Cyber Security (ACCS) developed this dataset by collecting
tcpdump records of artificial traffic[44][45]. The dataset contains 49 features. ACCS has
made all 100GB of data publicly available, including training csv files and the original traffic
preserved in pcap files. Its features are presented on Table 4.5.

Feature Description Type
srcip Source IP address nominal
sport Source port number integer
dstip Destination IP address nominal
dur Record total duration Float
dttl Destination to source time to live value Integer
sloss Source packets retransmitted or dropped Integer
dloss Destination packets retransmitted or dropped Integer
Sload Source bits per second Float
Dload Destination bits per second Float
Spkts Source to destination packet count integer
Dpkts Destination to source packet count integer
swin Source TCP window advertisement value integer
dwin Destination TCP window advertisement value integer

Table 4.5 UNSW-NB15 Dataset Features

4.1.6 MAWILab

The WIDE Project’s MAWI Working Group maintains MAWILab’s traffic statistics source.
The dataset contains a variety of labelled traffic traces that were captured at a variety of

4.2 ML-NIDS Examples 40

sampling sites. MAWILab[46] is a database that enables academics to examine their methods
for detecting traffic anomalies.

4.1.7 CTU MALWARE CAPTURE BOTNET

The CTU-13 dataset is a collection of botnet traffic intercepted at the CTU University in the
Czech Republic. The dataset’s objective was to collect a huge amount of genuine botnet
traffic and make it available for research. The dataset contains both pcap and Packet Flow
files.

4.2 ML-NIDS Examples

In this section, we will discuss strategies that leverage established machine learning algo-
rithms such as KNN, Bayesian Networks and Deep Learning in order to create resilient and
capable NIDS.

4.2.1 k-Nearest Neighbour IDS

B. Basaveswara Rao and K. Swathi introduced a novel way to attack classification in their
publication [47] by combining the kNN, Partial Distance Search kNearest Neighbour (KPDS)
[48], and Indexed Partial Distance Search kNearest Neighbor (IKPDS)[49] algorithms. KPDS
and IKPDS are both faster versions of kNN. The algorithm is composed of the following
steps:

1. The NSL KDD Cup is introduced as input dataset.

2. Data Preprocessing: Input is handled and transformed in a way that is consistent with
the kNN approach (normalization, one hot encoding).

3. kNN, KPDS, and IKPDS are used to classify fresh input and predict whether it is an
attack ("anomaly" category) or a typical incidence ("normal" class).

4.2 ML-NIDS Examples 41

Figure 4.2 Computation time comparison for kNN algorithms [47]

The authors’ trials reveal extremely precise outcomes. When the k value is increased,
KNN can recognize the majority of incoming threats and improves efficiency (Table 4.6).
Additionally, IKPDS and KPDS algorithms have been shown to be significantly faster than
the conventional kNN approach (Fig. 4.2).

Table 4.6 kNN-IDS Accuracy for different values of k

k Value 1 2 3
U2R 0.9996 0.9995 0.9994
R2L 0.9988 0.9983 0.9976
DoS 0.9994 0.9991 0.9985

4.2.2 ESIDE-Depian

The ESIDE-Depian software developed by Bringas and Santos[50] is a more sophisticated
technique. They use six Bayesian networks to examine packets that enter the system. Three
evaluate packets based on their headers (ICMP, TCP, and UDP), while three assess the content
and connection (Fig. 4.5).

4.2 ML-NIDS Examples 42

Figure 4.3 ESIDE-Depian Architecture[50]

The training data is derived from datasets created by the ESIDE programmers and
consists of both regular and malicious traffic. They classify packets in the dataset as benign
or malicious using an IDS called SNORT (Fig. 4.4). Following training, each Bayesian
network (expert) attempts to assess the likelihood that arriving packets are part of an attack
or intrusion attempt. When a new packet arrives the experts analyze the packet and reach a
common verdict regarding the nature of the packet.

4.2 ML-NIDS Examples 43

Figure 4.4 Eside’s Training Process[50]

Due to the fact that Snort’s principal function is to evaluate the headers of incoming
packets, the authors compared its efficiency to their ICMP,TCP,UDP-IP expert models. The
comparison in Table 4.7 reveals that the findings are equivalent and that both methodologies
were successful in tracing all assaults directed at them. Additionally, new fictitious anomalies
were created and added into the training traffic in order to assess the ESIDE-Depian Anomaly
detection capabilities. Although Snort was unable to identify any of the malicious packets
(due to the fact that Snort is a Signature-Based IDS), ESIDE-Depian detected them all.
Additionally, despite the fact that Eside-Depian analyzes packets rather than flow data, its
Connection Tracking Expert was able to track down all suspicious connection behavior.As a
result, ESIDE-Depian is just as effective as Snort at detecting dangerous patterns in packet
headers and discovering new threats.

The ESIDE-Depian project served as the initial impetus for the development of the
software detailed in this thesis. The Al Pastor software was initially developed with the goal
of offering a Deep Learning system capable of analyzing packet headers.

4.2 ML-NIDS Examples 44

Table 4.7 Eside Results: Connection, Payload Threats Detected

Analysis Type Connection Tracking Payload Analysis
Analysed Packets 226,428 2,676
Attacks in Sample 29 158
ESIDE-Depian Hits 29 (100%) 158 (100%)

4.2.3 Neural Network NIDS

Jia et. al attempted to create a NIDS system by using Neural Networks[51]. They are using
the KDD and the NSL-KDD datasets in order to train their models. Their neural network
consists of an input layer with 41 neurons (the number of selected features), four hidden
layers with RELU activation functions, and an output layer with five neurons that use the
SoftMax activation function to classify the packet as an attack type. Finally, they are using
the Adam optimization technique for which they found that a Learning Rate of 0.1 produced
the best results.

Figure 4.5 Neural Network IDS Solution[51]

To determine the optimal structure for their NN, they conducted multiple tests with
varying numbers of neurons and hidden layers. Fig. 4.6 shows the results of their experiments.
In general, accuracy increases when using up to three layer and decreases when a fifth layer
is added. Their best layout was 4 hidden layers with 100 neurons per layer.

4.2 ML-NIDS Examples 45

(a) (b)

Figure 4.7 NN Performance for different Datasets: (a) KDD (b) NSL-KDD

Figure 4.6 Accuracy with regards to Node and Hidden Layer Number[51]

Finally, the results of the NN NIDS are compared to those of other NIDS that employ
conventional machine learning approaches, and it is established that the suggested solution
IDS outperforms the others in terms of capability and performance. Fig. 4.7 displays the
performance of the NN NIDS solution for both the KDD and the NSL-KDD Datasets.

Chapter 5

Al Pastor

The majority of existing solutions of ML-IDS are trained using datasets similar to the ones
we presented in the previous chapter. The issue is that when those solutions are used on local
or corporate networks, they must be retrained for that specific network (which rarely contains
attack samples). Alternatively, a method or a tool must be devised in order to combine
training data from existing datasets and the local network in order to generate an average
normal state against which to compare anomalous situations.

Additionally, existing datasets contain very little protocol-specific information, and the
information included is restricted to protocol headers known to be the source of prior attacks
(for example TCP, ICMP flags, number of SYN Packets, etc). On the other hand, while
Packet Flow data is particularly effective in tracing a wide variety of attacks, it will have
difficulties with attack vectors that do not modify the pace at which data is transmitted but
instead rely on changes to the packet headers (for example FREAK, Heartbleed, Downgrade
attacks). Such zero-day attacks will be extremely difficult to detect if their fundamental
causes are not being monitored in the dataset (for example, a change in a TLS Record or an
incorrect bit on the DNS query Type).

This is how Al Pastor came to be. Using packet header data, the ESIDE-Depian NIDS
demonstrated how machine learning models (Protocol Experts) may be trained to identify
risks. Our first goal was to construct machine learning models capable of detecting attacks
in protocols other than those given by ESIDE (TCP, UDP, IP). Our experts were developed
using Neural Network approaches and were fairly comparable to those demonstrated on
4.2.3.

However, when developing Al Pastor, it became clear how time-consuming locating
the appropriate dataset and testing unique examples may be. Additionally, by observing
how several datasets supplied distinct properties, we determined that some form of dataset
adaptor would be really beneficial. Given that the majority of publicly accessible datasets

47

contain their original capture files (pcap), we had the following thought: What if we could
construct our own datasets by parsing pcap files? In this manner, we may generate datasets
by capturing packets in our local network traffic and also by converting different public
datasets into a single format, allowing us to exploit their collective expertise without the need
to change our expert models.

As a result, we built a software for producing NIDS datasets from pcap files. Al Pastor
supports the creation of two types of datasets:

• Protocol Header Datasets: Those dataset contain packet protocol specific information
and they differ per protocol stack (for example ETH/IPv4/TCP Dataset, ETH/IPv4/UDP
Dataset, ETH/IPv4/QUICC, etc.)

• Packet-Flow Data: Netflow-like data similar to the ones described on Section 4.1.1.

A label is then assigned to each entry in the dataset based on whether the respective packets
contained threats or raised an Alert. In order to diagnose threats we are using a Signature/Rule-
based IDS called Snort1. The overall Dataset Creation Process is displayed on Fig. 5.1, a
pcap file which contains TCP, UDP and ARP packets is parsed and multiple datasets are
created from it. Afterwards Snort assigns a label to each entry of every dataset.

1Snort: https://snort.org

https://snort.org

48

Figure 5.1 Al Pastor: Dataset Creation

The datasets are then utilized to train the NN Experts (Fig. 5.2). Each form of NN Expert
enables us to investigate various types of threats:

• Protocol Header Experts: These specialists are capable of tracing the same threats
that the signature-based IDS can, as well as their variations. Additionally, this IDS
functions as an Anomaly-based IDS, defining a typical packet header state and raising
warnings when strange packets are identified.

• Packet-Flow Expert: Is able to locate weird patterns in rate of data transmissions.
Therefore it is mostly able to distinguish Interruption attacks, similarly to IDSs trained
with the KDD and the NSL-KDD Datasets

5.1 Toolset 49

Figure 5.2 Al Pastor: Expert Training

5.1 Toolset

Al Pastor’s adoption of only open-source, free-to-use technology was important. As a result
of extensive investigation, we decided to use Argus to generate Packet-Flow data, Snort to
categorize network traffic, and Tensorflow2 to construct the Neural Network experts. This
section discusses those tools in further detail.

2Tensorflow: https://www.tensorflow.org/

5.1 Toolset 50

5.1.1 Argus

During development, we chose to analyse Packet-Flow datasets as well. As a result, we
sought to find software capable of converting pcap files to Flows. We looked at a variety of
solutions (such as Zeek or nfdump), but ultimately settled on Argus. Carter Bullard invented
Argus, which is practically, the first network flow system, in the early 1980’s. The Argus
Project is a privately funded open source endeavor focused on proofs of concept. It consists
of two components: Argus, a packet processing network flow sensor, and argus-clients, a
collection of Argus data processing apps. Fortunately, the Argus Clients Library has a method
for converting a pcap file to Netflow-like data. Argus appeared to be the greatest choice due
to its illustrious history and straightforward documentation.

5.1.2 Snort

In 1998, Martin Roesch created Snort, a free and open-source network intrusion detection
and prevention system that is now maintained by Cisco. It may be used as a packet sniffer or
to read data from captured network packets. Snort identifies malicious packets by comparing
them against a database of Rules (signatures). While the Enterprise Edition has the most
recent Ruleset, the Community Edition is frequently sufficient. Additionally, users have the
ability to set their own rules. When Snort is acting as a packet sniffer it has the ability to take
actions on packets that it deemed threatening, it can block them, blacklist their entire session,
or allow them to pass. In either case, if a packet matched a rule an alert is raised. Snort sets
the severity of the packet on a field called priority. They are now arranged in a four-tiered
hierarchy. A priority of 1 (extreme) is the most severe, while a priority of 4 (very low) is the
least severe.

Snort was chosen as the best signature-based IDS for Al Pastor due to its lengthy history,
modular architecture, ease of installation, and large community dataset.

5.2 Dataset Generator 51

5.1.3 Tensorflow

TensorFlow is a free and open-source software library for machine learning and artificial
intelligence. It offers researchers and developers with a diverse set of tools for building and
training their own machine learning models.

Keras is a Tensorflow toolbox for Python that enables the rapid development of Neural
Networks via a simple API. Additionally, among Kaggle’s top-5 winning teams, Keras is the
most often used deep learning framework.

We chose the Tensorflow library because because of its ease of use, extensive documenta-
tion, and vibrant community.

5.2 Dataset Generator

The process of creating the dataset is simple:

1. We first create the Packet-Flow Dataset

2. Then we start creating the Protocol Headers Dataset.

3. Every entry of the Protocol Headers Dataset is linked to a Packet-Flow Dataset entry

4. Snort Verdict is assigned to all Datasets

The procedure for developing each dataset is detailed below.

5.2.1 Packet Flow Data

To produce Neflow-like data out of pcap files, the argus tool was utilized. The process of
parsing a pcap file with argus requires two steps:

5.2 Dataset Generator 52

1. Transform the pcap to argus flow data

2. Properly display the argus flow data

In order to transform the pcap to argus flow data, Al Pastor executes the following
command:

1 argus -A -J -R -Z -r <pcap file > -w <output argus file >

The flags ’A’, ’J’, ’R’, and ’Z’ command argus to provide data on byte metrics, packet
performance, response times, and packet size. This information is quite valuable for showing
the packet flow statistics later on.

Al Pastor utilizes the RA Client Libraries to eventually obtain the packet flow data in the
desired manner. The following command parses a file containing argus flow data and outputs
it in the format requested:

1 ra -s field_1 -s field_2 ... -s field_n -r packet.argus

To guarantee that the features we collected were as efficient as possible, we aimed to collect
features that were equivalent to those specified in Mohanad Sarhan et. al. paper "Towards a
Standard Feature Set for Network Intrusion Detection System Datasets"[52]. The authors
achieved higher DR and F-1 scores while tackling binary and multi-class classification tasks
by making minor adjustments to existing datasets and introducing a list of new features.

We utilized the 5-tuple (src/dst ip/port, protocol type) to associate packets with the packet
flow to which they belonged. When a packet entry is added to the Protocol Header Dataset,
we trace the flow to which it belongs in the Packet-FLow Data and update the packet header
dataset’s "packetflow id" appropriately. If the packet is determined to be malicious, the
record in the Packet-Flow data is changed to reflect the packet’s "severity." If a new packet
belonging to the same flow is found by Snort to be more severe, the Packet-Flow item is
changed to reflect the new value.

The features of the Packet Flow Data are presented on Table 5.1

5.2.2 Protocol Header Datasets

Extraction of the Protocol Header Datasets from the pcap is a straightforward process. We
detach each protocol header and extract the data that is relevant to us (the features we have
chosen for this protocol). Later, we combine all of the protocol information that we gathered
and build a new entry. However, this information will be saved only in the Protocol Dataset
associated with this specific protocol stack (For example ETH/IPv4/TCP and ETH/IPv6/TCP
are two different protocol stacks and therefore their packets would be stored into separate

5.2 Dataset Generator 53

Feature Description Type
smac Source MAC addr nominal
dmac Destination MAC addr nominal
rank Unique record identifier int
saddr Source Address (IPv4,IPv6) nominal
daddr Destination Address (IPv4,IPv6) nominal
sport Source Port (Transport Layer) int
dport Destination Port (Transport Layer) int
proto Protocol (Top Layer) nominal
sbytes #Bytes sent from Source int
dbytes #Bytes sent to Source int
spkts #Packets sent from Source int
dpkts #Packets sent to Source int
dur Flow duration int
state General transaction state nominal
flgs Flow state flags seen in transaction. nominal
tcpopt The TCP connection options seen at initiation nominal
swin source TCP window advertisement int
dwin destination TCP window advertisement int
synack Setup round-trip time (SYN, SYNACK) int
ackdat Setup round-trip time (SYNACK, ACK) int
tcprtt Setup round-trip time (sum of SYNACK, ACK) int
sload Source bits per second. float
dload Destination bits per second. float
sttl src ->dst TTL value int
dttl dst ->src TTL value int
smaxsz maximum packet size for traffic transmitted by the src int
sminsz minimum packet size for traffic transmitted by the src int
dmaxsz maximum packet size for traffic transmitted by the dst int
dminsz minimum packet size for traffic transmitted by the dst int
sappbytes src ->dst application bytes int
dappbytes dst ->src application bytes int
sretrans source pkts retransmitted int
dretrans destination pkts retransmitted int
pretrans percent pkts retransmitted int
psretrans percent source pkts retransmitted int

Table 5.1 Al Pastor: Packet-Flow Data Features

5.3 Neural Network Models 54

Datasets). A simplistic form of the Dataset extraction algorithm is presented bellow in
Python.

1 datasets = {}
2 for packet in pcap_packets:
3 packet_protos = ""
4 packet_features = []
5 for header in get_headers(packet):
6 proto = get_proto_type(header)
7 # get dataset features
8 features = get_features(header)
9 # join with features list

10 packet_features = [* packet_features , *features]
11 # if there has never been a similar dataset created before
12 # generate a new one
13 if packet_protos not in datasets:
14 datasets[packet_protos] = []
15 datasets[packet_protos]. append(packet_features)

For TLS (and IPv6) packets, where the packet headers may be composed of many
sub headers (records for TLS, next headers for IPv6), we regard each underlying mini-
header as a separate protocol. For instance, a TLS packet containing three Records:
TLS_SERVER_HELLO, TLS_CHANGE_CIPHER, TLS_DATA will be added to the Dataset:

ET H/IPvX/TCP/T LS_SERV ER_HELLO/T LS_CHANGE_CIPHER/T LS_DATA

The features that have been selected for each protocol are listed in Table 5.2.

5.3 Neural Network Models

Al Pastor creates a unique Neural Network for each dataset, and the designs of these networks
may vary, we will see how each of this performs in the last section. However there are some
key architectural decisions which will be described bellow.

5.3.1 Data Pre-Processing

Al Pastor employs One Hot Encoding to convert nominal data to numerical data. Because each
feature in the Protocol Header dataset is instantly converted to a number during processing
of the pcap file, we need to apply the OHE only to some featurs of the Packet-Flow Dataset
("proto", "state", "flgs", "tcpopt"). Then we normalize the rest of the data as described in
section 3.1.3.

5.3 Neural Network Models 55

proto features
eth src, dst, type
arp hw_type, proto_type, hw_size, proto_size, opcode, is_unicast

dhcp
hw_type, hw_len, hops, secs, flags_bc, flags_reserved,
option_type, option_length, option_value, option_dhcp,
option_request_list_item, option_end

dns

flags_response, flags_opcode, flags_truncated, flags_recdesired,
flags_z, flags_checkdisable, count_queries, count_answers,
count_auth_rr, count_add_rr, qry_class, qry_name_len,
count_labels, qry_type, resp_class, resp_len,
resp_ttl, resp_type, response_to

ipv4
src, dst, checksum_status, ttl, proto, flags_rb, flags_df, flags_mf,
frag_offset, dsfield_dscp, dsfield_ecn, hdr_len, len

ipv6 tclass, tclass_dscp, tclass_ecn, plen, next, hlim, flow
icmp code, type, checksum_status
udp srcport, srcport, len, time_relative, time_delta

tcp

srcport, dstport, len, seq, ack, nxtseq, hdr_len, flags_res, flags_ns,
flags_cwr, flags_ecn, flags_urg, flags_ack, flags_push, flags_reset,
flags_syn, flags_fin, window_size_value, window_size_scalefactor,
checksum_status, urgent_pointer, time_relative, time_delta,option_kind,
option_len, options_mss_val, options_wscale_shift, options_wscale_multiplier,
options_timestamp_tsval, options_timestamp_tsecr, options_sack_perm,
options_eol, options_nop

tls

record_type, record_length, record_version, handshake_type, handshake_length,
handshake_version, handshake_random, handshake_session_id_length,
handshake_cipher_suites_length, handshake_ciphersuite,
handshake_comp_methods_length, handshake_comp_method,
handshake_extension_type, handshake_extension_len,
handshake_extensions_supported_groups_length,
handshake_extensions_supported_group,
handshake_extensions_ec_point_formats_length,
handshake_extensions_ec_point_format,
handshake_sig_hash_alg_len, handshake_sig_hash_alg,
handshake_extensions_key_share_client_length,
handshake_extensions_key_share_group,
handshake_extensions_key_share_key_exchange_length,
handshake_extensions_supported_versions_len,
handshake_extensions_supported_version,
handshake_server_curve_type, handshake_server_named_curve,
handshake_server_point_len,
handshake_session_ticket_length,
handshake_session_ticket_lifetime_hint

Table 5.2 Al Pastor: Protocol Headers Dataset

5.4 Results 56

We subsequently split the initial dataset into two subsets: one for testing and one for
training (0.2 and 0.8 of the original size respectively).

5.3.2 Adding Noise

However, there is an issue that we must address. Each neural network is trained using the
input data to distinguish between the Snort-generated attack types (1–4). This means that
our algorithm can distinguish between packets that "appear to be" typical network packets
(category 0) and packets that "appear to be" Snort-detected assaults. However, what happens
if a packet that is part of a new assault does not fit into any of the categories?

The package will then be classified according to whatever category it most closely
resembles. However, it is quite feasible that this packet was irrelevant in prior assaults and
hence classified as a "normal" packet. As a result, it is evident that we want a new category,
one that will assist us in identifying anomalous packets, or more precisely, abnormal network
activity. To do this, we introduce noise into the training data for each dataset (i.e., packets
with random values in fields) and assign them a class 5. From now on, packets that Al Pastor
identifies as category 5 are packets that do not conform to the network’s regular behavior.

5.3.3 NN Architecture

The produced NN is optimized using the Adam method; in the beginning, a callback function
attempts to discover the ideal learning rate for each dataset.

Each neuron in the input and hidden layers is stimulated using the RELU activation
function, which was chosen for its simplicity, reliability, and rapid convergence during
training. Due to the fact that we want to be able to categorize packets based on their
"Severity" level, the output layer has just four neurons that are triggered using softmax,
which is the de facto activation function for classification issues. During the Network’s
training phase, we introduced an accuracy monitor with a 20-round patience. If the accuracy
does not improve for at least 20 consecutive rounds, we return the weights to the optimal
Neural Network Configuration. Otherwise, 100 rounds of training are conducted. Appendix
B contains more information about the architecture and implementation of the NN models.

5.4 Results

Pcap Files from the MawiLab4.1.6 and CTU-Botnet4.1.7 datasets were used in the following
experiments. In addition, simulated network traffic was utilized to demonstrate different

5.4 Results 57

elements of the Al Pastor. The training datasets are around 80% of the original size, whereas
the testing datasets are 20% of the original size.

5.4.1 NN Configuration

We had specified the technology for our Neural Networks from the outset. RELU activation
functions are employed in the Hidden Layers neurons, as well as SoftMax on the output. To
train the model, the Adam Optimization Algorithm would be employed. However, because
we had not yet settled on the topology of the Neural Network, we needed to conduct some
experiments to determine the ideal number of neurons and layers.

We attempted to increase the number of nodes and hidden layers in our NN repeatedly
using data from the MAWI dataset in order to determine the configuration with the best
potential accuracy. We first doubted our efforts would succeed due to the fact that we were
essentially comparing separate datasets to different Neural Network Models, but in the
end, we observed some trends in the findings. It seems as though the ideal implementations
always featured 60 neurons and that between four and six hidden layers generated the greatest
outcomes. This is evident not only when testing different configurations for the Protocol
Header Datasets (Fig. 5.3) but also when inspecting the Packet Flow Dataset (Fig. 5.4).

5.4 Results 58

(a) (b)

(c) (d)

Figure 5.3 Protocol Header Experts Configuration: Selecting the best #Nodes/#Layers
Combination

Figure 5.4 Flow Expert Configuration: Selecting the best #Nodes/#Layers Combination

5.4 Results 59

Additionally, we needed to choose a suitable number for the Adam algorithm’s learning
rate. Once again, we utilized numerous rounds to determine the optimal learning rate for our
data. Similarly to our prior testing, we noticed that the majority of datasets had a similar
pattern of behavior, with the best learning rate being about 0.016. Figures 5.5 and 5.6 display
the test results for the Protocol Header and Packet Flow Experts respectively.

(a) (b)

(c) (d)

Figure 5.5 Protocol Header Experts Configuration: Selecting the best Learning Rate

5.4 Results 60

Figure 5.6 Packet Flow Expert Configuration: Selecting the best Learning Rate

According to the preceding, all Neural Network experts have six hidden layers and the
Adam’s Optimization Algorithm’s Learning Rate is set at 0.0016.

5.4.2 Testcase: DNS Response Headers

To begin, we will demonstrate how adding more protocol data affects the NN model’s
efficiency. A Command and Control attack (CNC), in general, creates a control link between
an attacker and a target. Snort can usually detect these sorts of attacks by examining the
outgoing and incoming packet rates. However some CNC attacks can be discovered by
investigating DNS packets that contain more replies than questions, as well as DNS packets
with extremely short time-to-live values.

As a consequence, we generated network traffic composed entirely of DNS requests, half
of which displayed features of CNC attacks. Three datasets were produced from the network
traffic: 1) the first included a subset of fields of the DNS queries 2) the second included fields
from the DNS Responses (such as minimum TTL), and 3) the third one just included Packet
Flow data.

It is theoretically impossible to relate the supplied Packets in the dataset to any threats by
training the NN on the first dataset (except if it manages to find out some hidden connection
that we were unaware of), since the dataset does not contain any DNS Response data. Fig.
5.7 illustrates the dataset’s results. The dataset performed poorly in identifying threats of
type 1 (CNC) as it achieved 35% Detection Rate.

5.4 Results 61

Figure 5.7 CNC-Attack: Missing DNS Response Dataset

However, when we train our NN models on the second dataset, we obtain a 100%
Detection Rate (Fig. 5.9). It is very feasible that our model discovered a way to correlate
DNS Response data (TTL and number of DNS Responses) to CNC attacks. However, the
FAR increases to 4%. This might be because certain packets with a short TTL or many DNS
responses are wrongly identified as malicious. This is a very tiny percentage of packets,
however, and should not be reason for alarm.

5.4 Results 62

Figure 5.8 CNC-Attack: Full DNS Header Dataset

In the last test, we used the Packet Flow dataset to train the Neural Network (Fig. 5.9).
Unfortunately, the dataset lacks the essential information to estimate the CNC threat since
it does not contain any information on DNS packets; instead, it examines rate data (packet
flows). Given its low Detection Rate and the fact that it incorrectly labeled certain Normal
packets as CNC attacks, we may surmise that the Neural Network may have associated some
irrelevant features in the dataset with type 1 attacks.

5.4 Results 63

Figure 5.9 CNC-Attack: Packet Flow Model

To identify diverse risks, we conclude that we must extract as much information as
possible from packet headers. This, however, adds to the processing time. Generally, a
trade-off occurs between accuracy and calculation time.

5.4.3 Testcase: BotNet Attack

In the following test, we attempted to demonstrate that the two types of datasets (Payload
and Packet flow) are capable of diagnosing distinct sorts of intrusions and that we should use
both datasets to more accurately identify threats.

To substantiate our assertions, we used portions of the CTU Malware Dataset (from the
Neris Botnet scenario). Our sample contains 85097 DNS packets, 34428 of which were
associated with a botnet attack. Snort recognized the majority of assaults based on the rate of
incoming packets. These were often Command and Control attacks, which Snort classified
as category 1 attacks (the most dangerous).

We therefored proceed to train two NN models, the ETH_IP_DNS Model and the packet
flow model. Fig. 5.10 displays the results of the Packet Header Model. Snort identified
port scan efforts as category 3 (by identifying the rate of incoming messages), whereas
crush attempts on Recursive DNS resolvers were classed as category 2. As previously noted,
CNC’s excessive DNS requests were tagged as 1. The ETH_IP_DNS Model is capable of

5.4 Results 64

identifying attacks of type 2 and 3, but it is unable to identify attacks of type 1 due to the
model’s lack of packet data rate monitoring. The large FAR implies that the model was
unable to fully correlate any of the attacks with the header data.

Figure 5.10 Neris Botnet: ETH_IP_DNS Model

When we instead use the Packet Flow Dataset (Fig. 5.11), we observe superior results.
To begin, it is self-evident that this dataset contains no assaults of type 3. This is because the
majority of those assaults were carried out in conjunction with type 1 attacks inside the same
flow. Because category 1 attacks are deemed to be more serious, the corresponding packet
flows are classified as category 1 rather than category 3. In this test, the model maintained a
low FAR (2%), while attempting to trace almost all packet flows attempting to conduct a DoS
Attack (95% percent DR). This was to be expected, as packet flows retain information about
data exchange rates, which enables us to identify DoS assaults. Regrettably, the model proved
incapable of tracing type 2 assaults (since it did not have access to header data information).
In this case, we would be able to trace all incoming threats by utilizing both the Packet Flow
expert’s and the appropriate Protocol Header expert’s verdicts.

5.4 Results 65

Figure 5.11 Neris Botnet: Packet Flow

5.4.4 Al Pastor as an Signature-Based IDS

To demonstrate Al Pastor’s efficacy against previously identified threats, we ran it on TCP
and ICMP datasets acquired from MAWI. Their performance is displayed in Fig. 5.12.

(a) (b)

Figure 5.12 Al Pastor: Traffic analysis against different Protocol types a) TCP b) ICMP

Al Pastor’s efficiency is obvious, and its performance is comparable to Snort’s. Thus, Al
Pastor has the ability to accomplish everything Snort does (Table 5.3). However, Al Pastor

5.4 Results 66

should ideally be capable of more: it should be capable of diagnosing previously unknown
attacks.

TCP ICMP
Total Packets 51160 2635
Attacks In Sample 11985 518
Threats Discovered 11978 518
Detection Rate 99.9% 100%
False Alarm Rate 1.2% 2.2%
F1-Score 97.9 95.8

Table 5.3 Al Pastor: MAWI Dataset ICMP-TCP Traffic Analysis

5.4.5 New Threats/Anomalies

Thus far, we have established Al Pastor’s effectiveness against recognized threats. However,
that is precisely what a signature-based IDS does. We did further experiments to demonstrate
that Al Pastor can act as an anomaly-based detection IDS as well. During those experiments
we captured some typical traffic and then introduced some abnormal packets that the system
had never seen before. In order to generate packets Python’s Scapy library was used 3.

Malformed ARP

We began the test by collecting data from the Mawi Dataset and training our Protocol Header
Experts on it. After the training was complete, we produced eight ARP packets with the field
OP set to a number between 100 and 1000 (the operation field in ARP is always set to 1 or 2)
and sent it to the network.

1 >>> sendp(Ether(dst="ff:ff:ff:ff:ff:ff",src="00:11:22:33:44:55")/ARP(
hwsrc="00:11:22:33:44:55",op=random.randint (100 ,1000),pdst="
132.11.44.2"))

We saved the collected traffic in pcap format and sent it to Al Pastor for conversion to
the Protocol Header Experts’ preferred data format. During this conversion, Al Pastor also
assigned Snorts’ verdict on every packet. In the end we used our ETH_ARP expert to predict
the Category of each of the given ARP packets. We compared the prediction with Snorts’
output and the results are presented on Figure(5.13).

3Scapy: https://scapy.net/

https://scapy.net/

5.4 Results 67

Figure 5.13 Outsnorting Snort: Malformed ARP Packet

The model properly identified all category 3 packets (included in the traffic we monitored).
However, it made the false assumption that one innocuous packet was of category 3. Finally,
the Packet Header Expert was able to track eight suspicious packets (category 5) that elicited
no Snort alarms. Naturally, those were the faulty packets we produced.

Malformed TCP

The ETH_IP_TCP Protocol Header Expert in this experiment has been trained by using an
excerpt of 213000 TCP packets from the MAWI Dataset. To demonstrate our approach, we
wanted to generate a packet that would be distinct from the TCP payloads that the expert
is accustomed to and yet would not trigger a Snort alert. The packet we created was a TCP
SYN Request with the TCP Reserved fields set to a random value.

1 >>> sendp(Ether(src="ab:ab:ab:ab:ab:ab", dst="cd:cd:cd:cd:cd:cd")/IP(
src="192.187.122.1", dst="192.111.1.3")/TCP(sport =12345 , dport
=54321 , flags="S",reserved =123))

We sent six of these messages to randomly chosen destination addresses and then repeated
the steps outlined at 5.4.5. The pcap file created contained 16 innocuous packets in addition
to our six faulty ones. When presented with the exported dataset, the ETH_IP_TCP Expert
accurately classified all packets (Fig. 5.14).

5.4 Results 68

Figure 5.14 Outsnorting Snort: Malformed TCP Packet

This experiment reveals that Al Pastor is capable of tracing strange, potentially harmful
packets (while typical signature-based IDSs such as Snort ignore them), hinting that Al
Pastor can act as an anomaly-based intrusion detection system.

Conclusion

Although security is unpredictable, since a danger cannot be predicted (if it could, it would
not be a threat), enforcing effective and thorough security monitoring makes the system
less susceptible to attacks. Even if a new danger is introduced (a new zero-day exploit), we
must be able to reassure future technology users that the system is capable of adapting and
overcoming the problem. Because it is our obligation to reassure consumers that, even if a
hypothetical security breach has catastrophic effects (for example, automobile and medical
equipment hacking), they should feel secure while taking use of contemporary technology’s
many advantages and conveniences.

This thesis provides a thorough examination of network intrusion detection systems based
on ML and DL algorithms. ML and DL approaches are addressed and briefly detailed, as are
IDS implementations that aid in the identification of threats in a network system. Finally, a
novel method of evaluating network data is shown by merging protocol-related and netflow
datasets. The aforementioned system, Al Pastor, was designed and developed during the
duration of this thesis and its results are also presented here.

While Al Pastor may not comprehend how each assault would cause harm, it is one step
closer to identifying new threats by evaluating not just the system’s flow data but also doing
packet inspection. Al Pastor is capable of recognizing unexpected traffic patterns even when
they have never been observed before.

There are several suggestions for future enhancements to Al Pastor. Among them are the
following:

• Supplementing the protocol header datasets with statistics (often found in Netflow
files) and finally attempting to merge the two types of datasets into one.

• Completing the project and developing a stand-alone IDS system that can be deployed
in real time alongside a Firewall in corporate and household networks to train and
assess incoming packets.

• Increase the number of parsers for additional protocols.

5.4 Results 70

• Developing effective methods for analyzing encrypted packets

• More testing against larger samples of genuine threats and abnormal packets, which
should result in alarms, system performance review, and maybe additional fixes.

List of Figures

1.1 Heartbleed: Dangerous memcpy call . 12
1.2 Heartbleed: Calling n2s without checking payload length 12
1.3 Heartbleed: Vulnerability Fix . 12

3.1 Neuron example . 25
3.2 Neural Network example . 26
3.3 Activation Functions: (a) Binary Step (b) Sigmoid (c) RELU (d) SoftMax . 28
3.4 Function z = 6x2 +2y2 . 29
3.5 Unrolling an RNN through time . 33

4.1 Training Process for ML-NIDS . 35
4.2 Computation time comparison for kNN algorithms [47] 41
4.3 ESIDE-Depian Architecture[50] . 42
4.4 Eside’s Training Process[50] . 43
4.5 Neural Network IDS Solution[51] . 44
4.7 NN Performance for different Datasets: (a) KDD (b) NSL-KDD 45
4.6 Accuracy with regards to Node and Hidden Layer Number[51] 45

5.1 Al Pastor: Dataset Creation . 48
5.2 Al Pastor: Expert Training . 49
5.3 Protocol Header Experts Configuration: Selecting the best #Nodes/#Layers

Combination . 58
5.4 Flow Expert Configuration: Selecting the best #Nodes/#Layers Combination 58
5.5 Protocol Header Experts Configuration: Selecting the best Learning Rate . 59
5.6 Packet Flow Expert Configuration: Selecting the best Learning Rate 60
5.7 CNC-Attack: Missing DNS Response Dataset 61
5.8 CNC-Attack: Full DNS Header Dataset 62
5.9 CNC-Attack: Packet Flow Model . 63
5.10 Neris Botnet: ETH_IP_DNS Model . 64

List of Figures 72

5.11 Neris Botnet: Packet Flow . 65
5.12 Al Pastor: Traffic analysis against different Protocol types a) TCP b) ICMP 65
5.13 Outsnorting Snort: Malformed ARP Packet 67
5.14 Outsnorting Snort: Malformed TCP Packet 68

List of Tables

2.1 IDS Confusion Matrix . 19

4.1 Netflow 9 fields - Example[6] . 37
4.2 KDD Features[41] . 37
4.3 Features of the NSL-KDD Dataset[43] . 38
4.4 Kyoto Dataset Features . 39
4.5 UNSW-NB15 Dataset Features . 39
4.6 kNN-IDS Accuracy for different values of k 41
4.7 Eside Results: Connection, Payload Threats Detected 44

5.1 Al Pastor: Packet-Flow Data Features . 53
5.2 Al Pastor: Protocol Headers Dataset . 55
5.3 Al Pastor: MAWI Dataset ICMP-TCP Traffic Analysis 66

Glossary

Roman Symbols

AI Artificial Intelligence

AIDS Anomaly-based Intrusion Detection System

DR Detection Rate

FAR False Alarm Rate

FN False Negative

FP False Positive

HIDS Host Intrusion Detection System

IDS Intrusion Detection System

IOC Indicators of Compromise

IoT Internet Of Things

IoV Internet Of Vehicles

IPS Intrusion Prevention System

ML-NIDS Machine Learning - Network Intrusion Detection Systems

ML Machine Learning

NIDS Network Intrusion Detection System

NN Neural Network

OHE One Hot Encoding

Glossary 75

Superscripts

RNN Recurrent Neural Networks

TNR True Negative Rate

TN True Negative

TP True Positive

Bibliography

[1] A. L. Samuel, Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development 3 (3) (1959) 210–229. doi:10.1147/rd.33.
0210.

[2] M. S. Campbell, A. J. Hoane, Search control methods in deep blue, in: In AAAI
Spring Symposium on Search Techniques for Problem Solving Under Uncertainty and
Incomplete Information, AAAI Press, p. pages.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, D. Hassabis, Mastering the game of go with deep neural networks and tree
search, Nature 529 (7587) (2016) 484–489. doi:10.1038/nature16961.
URL https://doi.org/10.1038/nature16961

[4] B. Marr, The five biggest cyber security trends in 2022,
https://www.forbes.com/sites/bernardmarr/2021/ 12/17/the-five-biggest-cyber-
security-trends-in-2022/?sh=207f1f744fa3.

[5] H. Liu, B. Lang, Machine learning and deep learning methods for intrusion detection
systems: A survey, Applied Sciences 9 (20) (2019) 4396. doi:10.3390/app9204396.
URL http://dx.doi.org/10.3390/app9204396

[6] Cisco it case study: Netflow, https://www.cisco.com/c/dam/en_us/about/ciscoitatwork/downloa
ds/ciscoitatwork/pdf/Cisco_IT_Case_Study_Netflow_print.pdf.

[7] L. Mayer Lux, Defining cyberterrorism, Revista chilena de derecho y tecnologÃa 7
(2018) 5 – 25.
URL http://www.scielo.cl/scielo.php?script=sci_arttext&pid=
S0719-25842018000200005&nrm=iso

[8] I. Winkler, A. T. Gomes, Chapter 2 - cyberwarfare concepts, in: I. Winkler, A. T.
Gomes (Eds.), Advanced Persistent Security, Syngress, 2017, pp. 15–19. doi:https:
//doi.org/10.1016/B978-0-12-809316-0.00002-6.
URL https://www.sciencedirect.com/science/article/pii/B9780128093160000026

[9] H. Chwe, The rise of cyber warfare: The digital age and american decline, 2016.

[10] D. Bohn, Us cyberattack reportedly hit iranian targets,
https://www.theverge.com/2019/6/22/18714010/us-cyberattack-ira nian-targets-
missile-command-report (Jun 2019).

https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://dx.doi.org/10.3390/app9204396
http://dx.doi.org/10.3390/app9204396
https://doi.org/10.3390/app9204396
http://dx.doi.org/10.3390/app9204396
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-25842018000200005&nrm=iso
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-25842018000200005&nrm=iso
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-25842018000200005&nrm=iso
https://www.sciencedirect.com/science/article/pii/B9780128093160000026
https://doi.org/https://doi.org/10.1016/B978-0-12-809316-0.00002-6
https://doi.org/https://doi.org/10.1016/B978-0-12-809316-0.00002-6
https://www.sciencedirect.com/science/article/pii/B9780128093160000026

Bibliography 77

[11] P. Singer, Stuxnet and its hidden lessons on the ethics of cyberweapons, Case Western
Reserve Journal of International Law 47 (2015) 79.

[12] W. Stallings, Cryptography and Network Security: Principles and Practice, 1998.

[13] A. Tyagi, Tcp/ip protocol suite, International Journal of Scientific Research in Com-
puter Science, Engineering and Information Technology (2020) 59–71doi:10.32628/
CSEIT206420.

[14] B. E. Carpenter, Architectural Principles of the Internet, RFC 1958 (Jun. 1996). doi:
10.17487/RFC1958.
URL https://www.rfc-editor.org/info/rfc1958

[15] G. Genosko, The case of ’mafiaboy’ and the rhetorical limits of hacktivism, Fibreculture
Journal (01 2006).

[16] F. Yihunie, E. Abdelfattah, A. Odeh, Analysis of ping of death dos and ddos attacks,
2018, pp. 1–4. doi:10.1109/LISAT.2018.8378010.

[17] M. Bogdanoski, T. Shuminoski, A. Risteski, Analysis of the syn flood dos attack,
International Journal of Computer Network and Information Security 5 (2013) 1–11.
doi:10.5815/ijcnis.2013.08.01.

[18] S. Suroto, A review of defense against slow http attack, JOIV : International Journal on
Informatics Visualization 1 (2017) 127. doi:10.30630/joiv.1.4.51.

[19] M. Williams, M. Tüxen, R. Seggelmann, Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension, RFC 6520 (Feb. 2012). doi:
10.17487/RFC6520.
URL https://www.rfc-editor.org/info/rfc6520

[20] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian,
V. Paxson, M. Bailey, J. A. Halderman, The matter of heartbleed, in: Proceedings
of the 2014 Conference on Internet Measurement Conference, IMC ’14, Association
for Computing Machinery, New York, NY, USA, 2014, p. 475–488. doi:10.1145/
2663716.2663755.
URL https://doi.org/10.1145/2663716.2663755

[21] S. Lee, Y. Shin, J. Hur, Return of Version Downgrade Attack in the Era of TLS 1.3,
Association for Computing Machinery, New York, NY, USA, 2020, p. 157–168.
URL https://doi.org/10.1145/3386367.3431310

[22] M. Green, Attack of the week: Freak (or ‘factoring the nsa for fun and
profit’), https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-
or-factoring-nsa/.

[23] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, E. Vázquez, Anomaly-based
network intrusion detection: Techniques, systems and challenges, Comput. Secur.
28 (1–2) (2009) 18–28. doi:10.1016/j.cose.2008.08.003.
URL https://doi.org/10.1016/j.cose.2008.08.003

https://doi.org/10.32628/CSEIT206420
https://doi.org/10.32628/CSEIT206420
https://www.rfc-editor.org/info/rfc1958
https://doi.org/10.17487/RFC1958
https://doi.org/10.17487/RFC1958
https://www.rfc-editor.org/info/rfc1958
https://doi.org/10.1109/LISAT.2018.8378010
https://doi.org/10.5815/ijcnis.2013.08.01
https://doi.org/10.30630/joiv.1.4.51
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://doi.org/10.17487/RFC6520
https://doi.org/10.17487/RFC6520
https://www.rfc-editor.org/info/rfc6520
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/3386367.3431310
https://doi.org/10.1145/3386367.3431310
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003

Bibliography 78

[24] J. Neyole, Y. Muchelule, A review of intrusion detection systems, International Journal
of Computer Science and Information Technology Research 5 (2017) 1–5.

[25] D. Stiawan, H. Abdullah, Y. Idris, Characterizing network intrusion prevention sys-
tem, International Journal of Computer Applications 14 (01 2011). doi:10.5120/
1811-2439.

[26] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, M. Fischer, Taxonomy and survey
of collaborative intrusion detection, ACM Computing Surveys 47 (05 2015). doi:
10.1145/2716260.

[27] Chapter 1 - introduction to intrusion detection systems, in: J. Burton, I. Dubrawsky,
V. Osipov, C. Tate Baumrucker, M. Sweeney (Eds.), Cisco Security Professional’s
Guide to Secure Intrusion Detection Systems, Syngress, Burlington, 2003, pp. 1–38.
doi:https://doi.org/10.1016/B978-193226669-6/50021-5.
URL https://www.sciencedirect.com/science/article/pii/B9781932266696500215

[28] T. M. Chen, P. J. Walsh, Chapter 3 - guarding against network intrusions, in: J. R. Vacca
(Ed.), Network and System Security (Second Edition), second edition Edition, Syngress,
Boston, 2014, pp. 57–82. doi:https://doi.org/10.1016/B978-0-12-416689-9.
00003-4.
URL https://www.sciencedirect.com/science/article/pii/B9780124166899000034

[29] M. Millett, Steven; Toolin, J. Bates, Analysis of computer audit data to create indicators
of compromise for intrusion detection, SMU Data Science Review 2 (1) (2019).

[30] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, E. Vázquez, Anomaly-based
network intrusion detection: Techniques, systems and challenges, Computers Security
28 (2009) 18–28. doi:10.1016/j.cose.2008.08.003.

[31] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, Survey of intrusion detection
systems: techniques, datasets and challenges, Cybersecurity 2 (12 2019). doi:10.
1186/s42400-019-0038-7.

[32] D. G. Kumar Ahuja, Evaluation metrics for intrusion detection systems-a study, Inter-
national Journal of Computer Science and Mobile Applications 11 (06 2015).

[33] J. Ulvila, J. Gaffney, Evaluation of intrusion detection systems, Journal of Research
of the National Institute of Standards and Technology 108 (2003) 453. doi:10.6028/
jres.108.040.

[34] J. Joyce, Bayes’ Theorem, in: E. N. Zalta (Ed.), The Stanford Encyclopedia of Philoso-
phy, Fall 2021 Edition, Metaphysics Research Lab, Stanford University, 2021.

[35] M. Nielsen, Neural networks and deep learning,
http://neuralnetworksanddeeplearning.com/chap1.html.

[36] D. Kingma, J. Ba, Adam: A method for stochastic optimization, International Confer-
ence on Learning Representations (12 2014).

[37] J. Guo, Backpropagation through time, 2013.

https://doi.org/10.5120/1811-2439
https://doi.org/10.5120/1811-2439
https://doi.org/10.1145/2716260
https://doi.org/10.1145/2716260
https://www.sciencedirect.com/science/article/pii/B9781932266696500215
https://doi.org/https://doi.org/10.1016/B978-193226669-6/50021-5
https://www.sciencedirect.com/science/article/pii/B9781932266696500215
https://www.sciencedirect.com/science/article/pii/B9780124166899000034
https://doi.org/https://doi.org/10.1016/B978-0-12-416689-9.00003-4
https://doi.org/https://doi.org/10.1016/B978-0-12-416689-9.00003-4
https://www.sciencedirect.com/science/article/pii/B9780124166899000034
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.6028/jres.108.040
https://doi.org/10.6028/jres.108.040

Bibliography 79

[38] Cisco ios netflow version 9 flow-record format - white paper.,
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper
09186a00800a3db9.pdf.

[39] A. Divekar, M. Parekh, V. Savla, R. Mishra, M. Shirole, Benchmarking datasets for
anomaly-based network intrusion detection: Kdd cup 99 alternatives, in: 2018 IEEE
3rd International Conference on Computing, Communication and Security (ICCCS),
2018, pp. 1–8. doi:10.1109/CCCS.2018.8586840.

[40] P. Aggarwal, S. K. Sharma, Analysis of kdd dataset attributes - class wise for intrusion
detection, Procedia Computer Science 57 (2015) 842–851, 3rd International Conference
on Recent Trends in Computing 2015 (ICRTC-2015). doi:https://doi.org/10.
1016/j.procs.2015.07.490.
URL https://www.sciencedirect.com/science/article/pii/S1877050915020190

[41] K. Siddique, Z. Akhtar, F. Aslam Khan, Y. Kim, Kdd cup 99 data sets: A perspective
on the role of data sets in network intrusion detection research, Computer 52 (2) (2019)
41–51. doi:10.1109/MC.2018.2888764.

[42] D. Protic, Review of kdd cup ’99, nsl-kdd and kyoto 2006+ datasets, Vojnotehnicki
glasnik 66 (2018) 580–596. doi:10.5937/vojtehg66-16670.

[43] D. Zheng, Z. Hong, N. Wang, P. Chen, An improved lda-based elm classification
for intrusion detection algorithm in iot application, Sensors 20 (2020) 1706. doi:
10.3390/s20061706.

[44] N. Moustafa, J. Slay, Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set), in: 2015 Military Communications
and Information Systems Conference (MilCIS), 2015, pp. 1–6. doi:10.1109/MilCIS.
2015.7348942.

[45] N. Moustafa, J. Slay, The evaluation of network anomaly detection systems: Statistical
analysis of the unsw-nb15 data set and the comparison with the kdd99 data set (2016)
1–14doi:10.1080/19393555.2015.1125974.

[46] R. Fontugne, P. Borgnat, P. Abry, K. Fukuda, Mawilab : Combining diverse anomaly
detectors for automated anomaly labeling and performance benchmarking, 2010, p. 8.
doi:10.1145/1921168.1921179.

[47] B. Brao, K. Swathi, Fast knn classifiers for network intrusion detection system, Indian
Journal of Science and Technology 10 (2017) 1–10. doi:10.17485/ijst/2017/
v10i14/93690.

[48] W. Hwang, K. Wen, Fast knn classification algorithm based on partial distance search,
Electronics Letters 34 (21) (1998) 2062–2063. doi:10.1049/el:19981427.

[49] Y.-L. Qiao, J.-S. Pan, S.-H. Sun, Improved partial distance search for k nearest-
neighbor classification, Vol. 2, 2004, pp. 1275 – 1278 Vol.2. doi:10.1109/ICME.
2004.1394456.

[50] P. Bringas, I. Santos, Bayesian Networks for Network Intrusion Detection, 2010. doi:
10.5772/10069.

https://doi.org/10.1109/CCCS.2018.8586840
https://www.sciencedirect.com/science/article/pii/S1877050915020190
https://www.sciencedirect.com/science/article/pii/S1877050915020190
https://doi.org/https://doi.org/10.1016/j.procs.2015.07.490
https://doi.org/https://doi.org/10.1016/j.procs.2015.07.490
https://www.sciencedirect.com/science/article/pii/S1877050915020190
https://doi.org/10.1109/MC.2018.2888764
https://doi.org/10.5937/vojtehg66-16670
https://doi.org/10.3390/s20061706
https://doi.org/10.3390/s20061706
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1145/1921168.1921179
https://doi.org/10.17485/ijst/2017/v10i14/93690
https://doi.org/10.17485/ijst/2017/v10i14/93690
https://doi.org/10.1049/el:19981427
https://doi.org/10.1109/ICME.2004.1394456
https://doi.org/10.1109/ICME.2004.1394456
https://doi.org/10.5772/10069
https://doi.org/10.5772/10069

Bibliography 80

[51] Y. Jia, M. Wang, Y. Wang, An network intrusion detection algorithm based on new
deep neural network, IET Information Security 13 (08 2018). doi:10.1049/iet-ifs.
2018.5258.

[52] M. Sarhan, S. Layeghy, N. Moustafa, M. Portmann, Towards a standard feature set of
nids datasets (01 2021).

https://doi.org/10.1049/iet-ifs.2018.5258
https://doi.org/10.1049/iet-ifs.2018.5258

Appendix A

Generating Datasets through Al Pastor

During this section we will present Al Pastors’ interface and the process of creating new
datasets.

A.1 Command Line

The various options of Al Pastor are presented bellow:

1 usage: al_pastor.py [-h] -p pcap [-s snort] [--sc snort -config] [-a
argus]

2 [--ac argus -client] [--ds] [--da] [--csv] [-o O]
3

4 Process some integers.
5

6 optional arguments:
7 -h, --help show this help message and exit
8 -p pcap location of pcap file to parse
9 -s snort location of snort bin

10 --sc snort -config location of snort configuration
11 -a argus location of argus bin
12 --ac argus -client location of argus client bin
13 --ds do not run snort
14 --da do not run argus
15 --csv generate csv files
16 -o O output directory

When the –da or –ds options are used, the associated functionality is omitted from the output
(–da does not generate a flow file, and –da does not label the packets).

A.2 Dataset Generation 82

A.2 Dataset Generation

The process of creating a dataset is rather straightforward. As seen below, we must specify
the pcap file to be used as input as well as the output folder:

Al Pastor was able to extract the relevant dataset information from the file pcaps/small-
Flows.pcap in this case. The amount of risks found in the packets is shown next to each
dataset displayed on the interface (also on the stats.txt file produced).

The resulting datasets were placed in the folder csv (since we specified this to be the
output folder via -o csv). The folder now contains the protocol header datasets (*_traffic.csv
files) as well as the Packet Flow dataset (flow.csv).

Appendix B

Analysing Protocol Header Datasets
through Tensorflow

The next sections will demonstrate how to work with the Al Pastor Protocol dataset. We will
be using the Neural Network Classes included in the Tensorflow library.

To begin, we import the required libraries.

1 import tensorflow as tf
2 from tensorflow.keras.utils import plot_model
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import pandas as pd
6 import math
7 from sklearn.model_selection import train_test_split
8 from sklearn.preprocessing import MinMaxScaler , OneHotEncoder
9 from sklearn.compose import make_column_transformer

10 from sklearn.metrics import confusion_matrix
11 from sklearn.metrics import ConfusionMatrixDisplay
12 from google.colab import drive
13 from sklearn.preprocessing import OneHotEncoder
14 from sklearn.utils.class_weight import compute_class_weight
15 from sklearn.utils import shuffle
16

17 # label category for noise
18 NOISE_CATEGORY = 5
19 # percentage of noise entries in the dataset
20 NOISE_RATIO = 0.02
21 RANDOM_SEED = 4931

https://www.tensorflow.org/

84

Following that, we attempt to read the data from the associated.csv file. The data is partitioned
into input/output data frames, and the unique labels are retrieved (a new unique label called
’Noise’ is added to the list of unique labels).

1 dataset=pd.read_csv(csv_file_location)
2 input = dataset.drop(["severity"], axis =1)
3 output = dataset["severity"]. values.reshape (-1,1)
4 headers = list(input.columns.values)
5 categories = np.insert(np.unique(output), 0, NOISE_CATEGORY)
6 categories.sort()

The noise function adds "noisy" packets in the dataset

1 def add_noise(input , output):
2 # add random noise data to training
3 noise_samples = math.floor(NOISE_RATIO*len(input))
4 rdx_idx = np.random.randint(
5 0,
6 high=len(input),
7 size=noise_samples
8)
9 noise_input = []

10 noise_output = []
11 for i in rdx_idx:
12 noise_input.append(np.random
13 .random_sample ((len(input [0]) ,)))
14 noise_output.append(np.array ([NOISE_CATEGORY]))
15 ohe.fit(noise_output)
16 noise_output = ohe.transform(noise_output)
17 input = np.concatenate ((input , np.array(noise_input)))
18 output = np.concatenate ((output , np.array(noise_output)))
19 return shuffle(input , output)

The input and output datasets are preprocessed and divided into training and testing sets.
Noise is also added into the samples.

1 ohe = OneHotEncoder(
2 categories =[categories], handle_unknown="ignore",
3 sparse=False
4)
5 ohe.fit(output)
6 output_ohe = ohe.transform(output)
7 # Uncomment the str_headers to parse netflow data
8 str_headers = []#["Proto", "State", "Flgs", "TcpOpt",]
9 non_str_headers = [

10 hdr for hdr in headers if hdr not in str_headers

85

11]
12

13 ct = make_column_transformer(
14 (OneHotEncoder(handle_unknown="ignore"), str_headers),
15 (MinMaxScaler (), non_str_headers),
16)
17 ct.fit(input)
18 input_train , input_test , output_train , output_test =
19 train_test_split(
20 input , output_ohe , test_size =0.2,
21 random_state =42
22)
23

24 input_train_n = ct.transform(input_train)
25 input_test_n = ct.transform(input_test)
26 input_train_n , output_train = add_noise(
27 input_train_n , output_train
28)
29 input_test_n , output_test = add_noise(
30 input_test_n , output_test
31)
32 df = pd.Series(np.array ([
33 x[0] for x in
34 ohe.inverse_transform(output_train)
35]))

We can pass Keras weights for each class. Examples from an under-represented class will be
given extra attention because of this.

1 cw = compute_class_weight(
2 classes=categories , y=df,
3 class_weight =" balanced"
4)
5 cwd = { idx: cw[idx] for idx in range(len(categories))}

Finally we create our model and fit our training data:

1 tf.random.set_seed(RANDOM_SEED)
2 model = tf.keras.Sequential ([
3 tf.keras.layers.Dense(60, activation="relu"),
4 tf.keras.layers.Dense(40, activation="relu"),
5 tf.keras.layers.Dense(
6 len(categories), activation="softmax"
7),
8])
9

86

10 val_cb = tf.keras.callbacks.EarlyStopping(
11 monitor=’val_accuracy ’, patience =20,
12 mode=’max’, restore_best_weights=True
13)
14 model.compile(
15 loss = tf.keras.losses.CategoricalCrossentropy (),
16 optimizer=tf.keras.optimizers.Adam(learning_rate =0.005) ,
17 metrics =["accuracy"])
18 model.fit(
19 input_train_n , output_train , epochs =40, batch_size =64,
20 validation_split =0.4, callbacks =[val_cb],
21 class_weight=cwd)

We can display a confusion matrix with the results by executing the following:

1 prediction = model.predict(input_test_n)
2 y_pred = ohe.inverse_transform(prediction).flatten ()
3 y_true = ohe.inverse_transform(output_test).flatten ()
4

5 cm = confusion_matrix(y_true , tf.round(y_pred))
6 test_categories = np.unique(y_pred)
7 disp = ConfusionMatrixDisplay(
8 confusion_matrix=cm ,
9 display_labels =[

10 "type :{}".format(x)
11 for x in test_categories
12]
13)
14 disp.plot()
15 plt.show()

	Contents
	Introduction
	1 Network Attacks
	1.1 The consequences of a network assault
	1.2 Taxonomy of attacks
	1.3 A brief overview of the TCP/IP Protocol Model
	1.3.1 Structure
	1.3.2 TCP/IP Protocols

	1.4 Attacks against the TCP/IP Model
	1.4.1 DoS Attacks
	1.4.2 Malware
	1.4.3 Design/Implementation Exploits
	1.4.4 Tracing such attacks

	2 Intrusion Detection Systems
	2.1 Deployment method based IDS
	2.1.1 Network-based Intrusion Detections Systems
	2.1.2 Host-based Intrusion Detections Systems

	2.2 Detection Methods
	2.2.1 Signature Based
	2.2.2 Anomaly Detection

	2.3 Metrics

	3 Machine and Deep Learning
	3.1 Concepts
	3.1.1 Dataset
	3.1.2 Feature engineering
	3.1.3 Data Preprocessing
	3.1.4 Learning

	3.2 Machine Learning Algorithms
	3.2.1 Naive Bayes
	3.2.2 K-Nearest Algorithms

	3.3 Deep Learning
	3.3.1 Neurons
	3.3.2 Neural Networks
	3.3.3 Activation Functions
	3.3.4 Training
	3.3.5 Recurrent Neural Networks

	4 Machine Learning and Network Intrusion Detection Systems
	4.1 Datasets
	4.1.1 Packet Flow
	4.1.2 KDD99
	4.1.3 NSL-KDD
	4.1.4 Kyoto Dataset
	4.1.5 UNSW-NB15
	4.1.6 MAWILab
	4.1.7 CTU MALWARE CAPTURE BOTNET

	4.2 ML-NIDS Examples
	4.2.1 k-Nearest Neighbour IDS
	4.2.2 ESIDE-Depian
	4.2.3 Neural Network NIDS

	5 Al Pastor
	5.1 Toolset
	5.1.1 Argus
	5.1.2 Snort
	5.1.3 Tensorflow

	5.2 Dataset Generator
	5.2.1 Packet Flow Data
	5.2.2 Protocol Header Datasets

	5.3 Neural Network Models
	5.3.1 Data Pre-Processing
	5.3.2 Adding Noise
	5.3.3 NN Architecture

	5.4 Results
	5.4.1 NN Configuration
	5.4.2 Testcase: DNS Response Headers
	5.4.3 Testcase: BotNet Attack
	5.4.4 Al Pastor as an Signature-Based IDS
	5.4.5 New Threats/Anomalies

	Conclusion
	List of Figures
	List of Tables
	Glossary
	Bibliography
	Appendix A Generating Datasets through Al Pastor
	A.1 Command Line
	A.2 Dataset Generation

	Appendix B Analysing Protocol Header Datasets through Tensorflow

